diff -r 4e72cd222e0b -r ee97b6463cb4 src/HOL/Hyperreal/HyperDef.thy --- a/src/HOL/Hyperreal/HyperDef.thy Mon Mar 01 11:52:59 2004 +0100 +++ b/src/HOL/Hyperreal/HyperDef.thy Mon Mar 01 13:51:21 2004 +0100 @@ -477,24 +477,16 @@ show "0 \ (1::hypreal)" by (rule hypreal_zero_not_eq_one) show "x \ 0 ==> inverse x * x = 1" by (simp add: hypreal_mult_inverse_left) show "y \ 0 ==> x / y = x * inverse y" by (simp add: hypreal_divide_def) - assume eq: "z+x = z+y" - hence "(-z + z) + x = (-z + z) + y" by (simp only: eq hypreal_add_assoc) - thus "x = y" by (simp add: hypreal_add_minus_left) qed -lemma HYPREAL_INVERSE_ZERO: "inverse 0 = (0::hypreal)" -by (simp add: hypreal_inverse hypreal_zero_def) - -lemma HYPREAL_DIVISION_BY_ZERO: "a / (0::hypreal) = 0" -by (simp add: hypreal_divide_def HYPREAL_INVERSE_ZERO - hypreal_mult_commute [of a]) - instance hypreal :: division_by_zero proof fix x :: hypreal - show "inverse 0 = (0::hypreal)" by (rule HYPREAL_INVERSE_ZERO) - show "x/0 = 0" by (rule HYPREAL_DIVISION_BY_ZERO) + show inv: "inverse 0 = (0::hypreal)" + by (simp add: hypreal_inverse hypreal_zero_def) + show "x/0 = 0" + by (simp add: hypreal_divide_def inv hypreal_mult_commute [of a]) qed @@ -569,9 +561,6 @@ instance hypreal :: ordered_field proof fix x y z :: hypreal - show "0 < (1::hypreal)" - by (simp add: hypreal_zero_def hypreal_one_def linorder_not_le [symmetric], - simp add: hypreal_le) show "x \ y ==> z + x \ z + y" by (rule hypreal_add_left_mono) show "x < y ==> 0 < z ==> z * x < z * y"