diff -r 1bfdd19c1d47 -r ef006735bee8 doc-src/TutorialI/Inductive/AB.thy --- a/doc-src/TutorialI/Inductive/AB.thy Tue Nov 07 18:38:24 2000 +0100 +++ b/doc-src/TutorialI/Inductive/AB.thy Wed Nov 08 14:38:04 2000 +0100 @@ -105,7 +105,7 @@ @{thm[display]nat0_intermed_int_val[no_vars]} where @{term f} is of type @{typ"nat \ int"}, @{typ int} are the integers, @{term abs} is the absolute value function, and @{term"#1::int"} is the -integer 1 (see \S\ref{sec:int}). +integer 1 (see \S\ref{sec:numbers}). First we show that the our specific function, the difference between the numbers of @{term a}'s and @{term b}'s, does indeed only change by 1 in every @@ -120,7 +120,7 @@ int(size[x\take (i+1) w. \P x])) - (int(size[x\take i w. P x]) - - int(size[x\take i w. \P x]))) <= #1"; + int(size[x\take i w. \P x]))) \ #1"; txt{*\noindent The lemma is a bit hard to read because of the coercion function