diff -r ddca85598c65 -r efac889fccbc src/HOL/Old_Number_Theory/EulerFermat.thy --- a/src/HOL/Old_Number_Theory/EulerFermat.thy Sat Oct 10 16:21:34 2015 +0200 +++ b/src/HOL/Old_Number_Theory/EulerFermat.thy Sat Oct 10 16:26:23 2015 +0200 @@ -3,20 +3,20 @@ Copyright 2000 University of Cambridge *) -section {* Fermat's Little Theorem extended to Euler's Totient function *} +section \Fermat's Little Theorem extended to Euler's Totient function\ theory EulerFermat imports BijectionRel IntFact begin -text {* +text \ Fermat's Little Theorem extended to Euler's Totient function. More abstract approach than Boyer-Moore (which seems necessary to achieve the extended version). -*} +\ -subsection {* Definitions and lemmas *} +subsection \Definitions and lemmas\ inductive_set RsetR :: "int => int set set" for m :: int where @@ -54,11 +54,11 @@ where "zcongm m = (\a b. zcong a b m)" lemma abs_eq_1_iff [iff]: "(abs z = (1::int)) = (z = 1 \ z = -1)" - -- {* LCP: not sure why this lemma is needed now *} + -- \LCP: not sure why this lemma is needed now\ by (auto simp add: abs_if) -text {* \medskip @{text norRRset} *} +text \\medskip @{text norRRset}\ declare BnorRset.simps [simp del] @@ -146,7 +146,7 @@ done -text {* \medskip @{term noXRRset} *} +text \\medskip @{term noXRRset}\ lemma RRset_gcd [rule_format]: "is_RRset A m ==> a \ A --> zgcd a m = 1" @@ -249,7 +249,7 @@ \(BnorRset a m) * x^card (BnorRset a m)" apply (induct a m rule: BnorRset_induct) prefer 2 - apply (simplesubst BnorRset.simps) --{*multiple redexes*} + apply (simplesubst BnorRset.simps) --\multiple redexes\ apply (unfold Let_def, auto) apply (simp add: Bnor_fin Bnor_mem_zle_swap) apply (subst setprod.insert) @@ -259,7 +259,7 @@ done -subsection {* Fermat *} +subsection \Fermat\ lemma bijzcong_zcong_prod: "(A, B) \ bijR (zcongm m) ==> [\A = \B] (mod m)"