diff -r ad6d4a14adb5 -r f03a01a18c6e src/HOL/Analysis/Cartesian_Space.thy --- a/src/HOL/Analysis/Cartesian_Space.thy Fri Apr 12 19:48:29 2019 +0200 +++ b/src/HOL/Analysis/Cartesian_Space.thy Fri Apr 12 22:09:25 2019 +0200 @@ -13,7 +13,7 @@ Finite_Cartesian_Product Linear_Algebra begin -subsection%unimportant \Type @{typ \'a ^ 'n\} and fields as vector spaces\ (*much of the following +subsection\<^marker>\tag unimportant\ \Type @{typ \'a ^ 'n\} and fields as vector spaces\ (*much of the following is really basic linear algebra, check for overlap? rename subsection? *) definition "cart_basis = {axis i 1 | i. i\UNIV}" @@ -552,7 +552,7 @@ using nullspace_inter_rowspace [of A "x-y"] by (metis diff_eq_diff_eq diff_self matrix_vector_mult_diff_distrib span_diff) -definition%important rank :: "'a::field^'n^'m=>nat" +definition\<^marker>\tag important\ rank :: "'a::field^'n^'m=>nat" where row_rank_def_gen: "rank A \ vec.dim(rows A)" lemma row_rank_def: "rank A = dim (rows A)" for A::"real^'n^'m" @@ -671,7 +671,7 @@ by (metis matrix_transpose_mul rank_mul_le_right rank_transpose) -subsection%unimportant \Lemmas for working on \real^1/2/3/4\\ +subsection\<^marker>\tag unimportant\ \Lemmas for working on \real^1/2/3/4\\ lemma exhaust_2: fixes x :: 2 @@ -736,7 +736,7 @@ lemma sum_4: "sum f (UNIV::4 set) = f 1 + f 2 + f 3 + f 4" unfolding UNIV_4 by (simp add: ac_simps) -subsection%unimportant\The collapse of the general concepts to dimension one\ +subsection\<^marker>\tag unimportant\\The collapse of the general concepts to dimension one\ lemma vector_one: "(x::'a ^1) = (\ i. (x$1))" by (simp add: vec_eq_iff) @@ -762,7 +762,7 @@ by (auto simp add: norm_real dist_norm) -subsection%unimportant\Routine results connecting the types \<^typ>\real^1\ and \<^typ>\real\\ +subsection\<^marker>\tag unimportant\\Routine results connecting the types \<^typ>\real^1\ and \<^typ>\real\\ lemma vector_one_nth [simp]: fixes x :: "'a^1" shows "vec (x $ 1) = x" @@ -795,7 +795,7 @@ done -subsection%unimportant\Explicit vector construction from lists\ +subsection\<^marker>\tag unimportant\\Explicit vector construction from lists\ definition "vector l = (\ i. foldr (\x f n. fun_upd (f (n+1)) n x) l (\n x. 0) 1 i)" @@ -835,7 +835,7 @@ apply (simp add: forall_3) done -subsection%unimportant \lambda skolemization on cartesian products\ +subsection\<^marker>\tag unimportant\ \lambda skolemization on cartesian products\ lemma lambda_skolem: "(\i. \x. P i x) \ (\x::'a ^ 'n. \i. P i (x $ i))" (is "?lhs \ ?rhs") @@ -950,7 +950,7 @@ lemma const_vector_cart:"((\ i. d)::real^'n) = (\i\Basis. d *\<^sub>R i)" by (rule vector_cart) -subsection%unimportant \Explicit formulas for low dimensions\ +subsection\<^marker>\tag unimportant\ \Explicit formulas for low dimensions\ lemma prod_neutral_const: "prod f {(1::nat)..1} = f 1" by simp @@ -964,7 +964,7 @@ subsection \Orthogonality of a matrix\ -definition%important "orthogonal_matrix (Q::'a::semiring_1^'n^'n) \ +definition\<^marker>\tag important\ "orthogonal_matrix (Q::'a::semiring_1^'n^'n) \ transpose Q ** Q = mat 1 \ Q ** transpose Q = mat 1" lemma orthogonal_matrix: "orthogonal_matrix (Q:: real ^'n^'n) \ transpose Q ** Q = mat 1"