diff -r ad6d4a14adb5 -r f03a01a18c6e src/HOL/Analysis/Function_Topology.thy --- a/src/HOL/Analysis/Function_Topology.thy Fri Apr 12 19:48:29 2019 +0200 +++ b/src/HOL/Analysis/Function_Topology.thy Fri Apr 12 22:09:25 2019 +0200 @@ -74,7 +74,7 @@ So, we use the first formulation, which moreover seems to give rise to more straightforward proofs. \ -definition%important product_topology::"('i \ ('a topology)) \ ('i set) \ (('i \ 'a) topology)" +definition\<^marker>\tag important\ product_topology::"('i \ ('a topology)) \ ('i set) \ (('i \ 'a) topology)" where "product_topology T I = topology_generated_by {(\\<^sub>E i\I. X i) |X. (\i. openin (T i) (X i)) \ finite {i. X i \ topspace (T i)}}" @@ -548,12 +548,12 @@ qed -subsubsection%important \Powers of a single topological space as a topological space, using type classes\ +subsubsection\<^marker>\tag important\ \Powers of a single topological space as a topological space, using type classes\ instantiation "fun" :: (type, topological_space) topological_space begin -definition%important open_fun_def: +definition\<^marker>\tag important\ open_fun_def: "open U = openin (product_topology (\i. euclidean) UNIV) U" instance proof @@ -653,7 +653,7 @@ by (intro continuous_intros) auto qed -subsubsection%important \Topological countability for product spaces\ +subsubsection\<^marker>\tag important\ \Topological countability for product spaces\ text \The next two lemmas are useful to prove first or second countability of product spaces, but they have more to do with countability and could @@ -897,10 +897,10 @@ instantiation "fun" :: (countable, metric_space) metric_space begin -definition%important dist_fun_def: +definition\<^marker>\tag important\ dist_fun_def: "dist x y = (\n. (1/2)^n * min (dist (x (from_nat n)) (y (from_nat n))) 1)" -definition%important uniformity_fun_def: +definition\<^marker>\tag important\ uniformity_fun_def: "(uniformity::(('a \ 'b) \ ('a \ 'b)) filter) = (INF e\{0<..}. principal {(x, y). dist (x::('a\'b)) y < e})" text \Except for the first one, the auxiliary lemmas below are only useful when proving the