diff -r ad6d4a14adb5 -r f03a01a18c6e src/HOL/Analysis/Set_Integral.thy --- a/src/HOL/Analysis/Set_Integral.thy Fri Apr 12 19:48:29 2019 +0200 +++ b/src/HOL/Analysis/Set_Integral.thy Fri Apr 12 22:09:25 2019 +0200 @@ -15,11 +15,11 @@ Notation *) -definition%important "set_borel_measurable M A f \ (\x. indicator A x *\<^sub>R f x) \ borel_measurable M" +definition\<^marker>\tag important\ "set_borel_measurable M A f \ (\x. indicator A x *\<^sub>R f x) \ borel_measurable M" -definition%important "set_integrable M A f \ integrable M (\x. indicator A x *\<^sub>R f x)" +definition\<^marker>\tag important\ "set_integrable M A f \ integrable M (\x. indicator A x *\<^sub>R f x)" -definition%important "set_lebesgue_integral M A f \ lebesgue_integral M (\x. indicator A x *\<^sub>R f x)" +definition\<^marker>\tag important\ "set_lebesgue_integral M A f \ lebesgue_integral M (\x. indicator A x *\<^sub>R f x)" syntax "_ascii_set_lebesgue_integral" :: "pttrn \ 'a set \ 'a measure \ real \ real" @@ -417,7 +417,7 @@ and intgbl: "set_integrable M (\i. A i) f" shows "LINT x:(\i. A i)|M. f x = (\i. (LINT x:(A i)|M. f x))" unfolding set_lebesgue_integral_def -proof%unimportant (subst integral_suminf[symmetric]) +proof (subst integral_suminf[symmetric]) show int_A: "integrable M (\x. indicat_real (A i) x *\<^sub>R f x)" for i using intgbl unfolding set_integrable_def [symmetric] by (rule set_integrable_subset) auto