diff -r 2008f1cf3030 -r f0a927235162 src/HOL/Probability/Sigma_Algebra.thy --- a/src/HOL/Probability/Sigma_Algebra.thy Sat Mar 15 03:37:22 2014 +0100 +++ b/src/HOL/Probability/Sigma_Algebra.thy Sat Mar 15 08:31:33 2014 +0100 @@ -297,7 +297,7 @@ qed have **: "range ?A' = range A" using surj_from_nat - by (auto simp: image_compose intro!: imageI) + by (auto simp: image_comp [symmetric] intro!: imageI) show ?thesis unfolding * ** .. qed @@ -1493,12 +1493,13 @@ have fab: "f \ (space a -> space b)" and ba: "\y. y \ sets b \ (f -` y) \ (space a) \ sets a" using f by (auto simp add: measurable_def) - have eq: "\y. f -` g -` y \ space a = f -` (g -` y \ t) \ space a" using t + have eq: "\y. (g \ f) -` y \ space a = f -` (g -` y \ t) \ space a" using t by force show ?thesis - apply (auto simp add: measurable_def vimage_compose) + apply (auto simp add: measurable_def vimage_comp) apply (metis funcset_mem fab g) - apply (subst eq, metis ba cb) + apply (subst eq) + apply (metis ba cb) done qed