diff -r 4e3e55aedd7f -r f0dfcd8329d0 src/HOL/Relation.thy --- a/src/HOL/Relation.thy Sat Jun 04 17:48:58 2022 +0200 +++ b/src/HOL/Relation.thy Sat Jun 04 17:58:08 2022 +0200 @@ -224,9 +224,15 @@ lemma refl_on_INTER: "\x\S. refl_on (A x) (r x) \ refl_on (\(A ` S)) (\(r ` S))" unfolding refl_on_def by fast +lemma reflp_on_Inf: "\x\S. reflp_on (A x) (R x) \ reflp_on (\(A ` S)) (\(R ` S))" + by (auto intro: reflp_onI dest: reflp_onD) + lemma refl_on_UNION: "\x\S. refl_on (A x) (r x) \ refl_on (\(A ` S)) (\(r ` S))" unfolding refl_on_def by blast +lemma reflp_on_Sup: "\x\S. reflp_on (A x) (R x) \ reflp_on (\(A ` S)) (\(R ` S))" + by (auto intro: reflp_onI dest: reflp_onD) + lemma refl_on_empty [simp]: "refl_on {} {}" by (simp add: refl_on_def)