diff -r 247eac9758dd -r f164526d8727 src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Fri Jun 17 09:44:16 2016 +0200 +++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Wed Jun 15 22:19:03 2016 +0200 @@ -10557,16 +10557,16 @@ next case False define f where "f \ \x. setdist {x} T - setdist {x} S" - have contf: "\x. isCont f x" - unfolding f_def by (intro continuous_intros continuous_at_setdist) + have contf: "continuous_on UNIV f" + unfolding f_def by (intro continuous_intros continuous_on_setdist) show ?thesis proof (rule_tac U = "{x. f x > 0}" and V = "{x. f x < 0}" in that) show "{x. 0 < f x} \ {x. f x < 0} = {}" by auto show "open {x. 0 < f x}" - by (simp add: open_Collect_less contf) + by (simp add: open_Collect_less contf continuous_on_const) show "open {x. f x < 0}" - by (simp add: open_Collect_less contf) + by (simp add: open_Collect_less contf continuous_on_const) show "S \ {x. 0 < f x}" apply (clarsimp simp add: f_def setdist_sing_in_set) using assms