diff -r 5e82015fa879 -r f2d327275065 src/HOL/Analysis/Abstract_Topology.thy --- a/src/HOL/Analysis/Abstract_Topology.thy Sun Mar 24 20:31:53 2019 +0100 +++ b/src/HOL/Analysis/Abstract_Topology.thy Tue Mar 26 17:01:36 2019 +0000 @@ -1609,6 +1609,8 @@ qed qed (auto simp: continuous_map_on_empty) +declare continuous_map_const [THEN iffD2, continuous_intros] + lemma continuous_map_compose: assumes f: "continuous_map X X' f" and g: "continuous_map X' X'' g" shows "continuous_map X X'' (g \ f)" @@ -3773,6 +3775,13 @@ shows "closedin (top_of_set S) (S \ f -` T)" using assms continuous_on_closed by blast +lemma continuous_map_subtopology_eu [simp]: + "continuous_map (subtopology euclidean S) (subtopology euclidean T) h \ continuous_on S h \ h ` S \ T" + apply safe + apply (metis continuous_map_closedin_preimage_eq continuous_map_in_subtopology continuous_on_closed order_refl topspace_euclidean_subtopology) + apply (simp add: continuous_map_closedin_preimage_eq image_subset_iff) + by (metis (no_types, hide_lams) continuous_map_closedin_preimage_eq continuous_map_in_subtopology continuous_on_closed order_refl topspace_euclidean_subtopology) + subsection%unimportant \Half-global and completely global cases\ lemma continuous_openin_preimage_gen: