diff -r a935175fe6b6 -r f462e49eaf11 src/HOL/ex/Quickcheck_Examples.thy --- a/src/HOL/ex/Quickcheck_Examples.thy Tue Feb 21 23:25:36 2012 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,541 +0,0 @@ -(* Title: HOL/ex/Quickcheck_Examples.thy - Author: Stefan Berghofer, Lukas Bulwahn - Copyright 2004 - 2010 TU Muenchen -*) - -header {* Examples for the 'quickcheck' command *} - -theory Quickcheck_Examples -imports Complex_Main "~~/src/HOL/Library/Dlist" "~~/src/HOL/Library/Multiset" -begin - -text {* -The 'quickcheck' command allows to find counterexamples by evaluating -formulae. -Currently, there are two different exploration schemes: -- random testing: this is incomplete, but explores the search space faster. -- exhaustive testing: this is complete, but increasing the depth leads to - exponentially many assignments. - -quickcheck can handle quantifiers on finite universes. - -*} - -declare [[quickcheck_timeout = 3600]] - -subsection {* Lists *} - -theorem "map g (map f xs) = map (g o f) xs" - quickcheck[random, expect = no_counterexample] - quickcheck[exhaustive, size = 3, expect = no_counterexample] - oops - -theorem "map g (map f xs) = map (f o g) xs" - quickcheck[random, expect = counterexample] - quickcheck[exhaustive, expect = counterexample] - oops - -theorem "rev (xs @ ys) = rev ys @ rev xs" - quickcheck[random, expect = no_counterexample] - quickcheck[exhaustive, expect = no_counterexample] - quickcheck[exhaustive, size = 1000, timeout = 0.1] - oops - -theorem "rev (xs @ ys) = rev xs @ rev ys" - quickcheck[random, expect = counterexample] - quickcheck[exhaustive, expect = counterexample] - oops - -theorem "rev (rev xs) = xs" - quickcheck[random, expect = no_counterexample] - quickcheck[exhaustive, expect = no_counterexample] - oops - -theorem "rev xs = xs" - quickcheck[tester = random, finite_types = true, report = false, expect = counterexample] - quickcheck[tester = random, finite_types = false, report = false, expect = counterexample] - quickcheck[tester = random, finite_types = true, report = true, expect = counterexample] - quickcheck[tester = random, finite_types = false, report = true, expect = counterexample] - quickcheck[tester = exhaustive, finite_types = true, expect = counterexample] - quickcheck[tester = exhaustive, finite_types = false, expect = counterexample] -oops - - -text {* An example involving functions inside other data structures *} - -primrec app :: "('a \ 'a) list \ 'a \ 'a" where - "app [] x = x" - | "app (f # fs) x = app fs (f x)" - -lemma "app (fs @ gs) x = app gs (app fs x)" - quickcheck[random, expect = no_counterexample] - quickcheck[exhaustive, size = 4, expect = no_counterexample] - by (induct fs arbitrary: x) simp_all - -lemma "app (fs @ gs) x = app fs (app gs x)" - quickcheck[random, expect = counterexample] - quickcheck[exhaustive, expect = counterexample] - oops - -primrec occurs :: "'a \ 'a list \ nat" where - "occurs a [] = 0" - | "occurs a (x#xs) = (if (x=a) then Suc(occurs a xs) else occurs a xs)" - -primrec del1 :: "'a \ 'a list \ 'a list" where - "del1 a [] = []" - | "del1 a (x#xs) = (if (x=a) then xs else (x#del1 a xs))" - -text {* A lemma, you'd think to be true from our experience with delAll *} -lemma "Suc (occurs a (del1 a xs)) = occurs a xs" - -- {* Wrong. Precondition needed.*} - quickcheck[random, expect = counterexample] - quickcheck[exhaustive, expect = counterexample] - oops - -lemma "xs ~= [] \ Suc (occurs a (del1 a xs)) = occurs a xs" - quickcheck[random, expect = counterexample] - quickcheck[exhaustive, expect = counterexample] - -- {* Also wrong.*} - oops - -lemma "0 < occurs a xs \ Suc (occurs a (del1 a xs)) = occurs a xs" - quickcheck[random, expect = no_counterexample] - quickcheck[exhaustive, expect = no_counterexample] - by (induct xs) auto - -primrec replace :: "'a \ 'a \ 'a list \ 'a list" where - "replace a b [] = []" - | "replace a b (x#xs) = (if (x=a) then (b#(replace a b xs)) - else (x#(replace a b xs)))" - -lemma "occurs a xs = occurs b (replace a b xs)" - quickcheck[random, expect = counterexample] - quickcheck[exhaustive, expect = counterexample] - -- {* Wrong. Precondition needed.*} - oops - -lemma "occurs b xs = 0 \ a=b \ occurs a xs = occurs b (replace a b xs)" - quickcheck[random, expect = no_counterexample] - quickcheck[exhaustive, expect = no_counterexample] - by (induct xs) simp_all - - -subsection {* Trees *} - -datatype 'a tree = Twig | Leaf 'a | Branch "'a tree" "'a tree" - -primrec leaves :: "'a tree \ 'a list" where - "leaves Twig = []" - | "leaves (Leaf a) = [a]" - | "leaves (Branch l r) = (leaves l) @ (leaves r)" - -primrec plant :: "'a list \ 'a tree" where - "plant [] = Twig " - | "plant (x#xs) = Branch (Leaf x) (plant xs)" - -primrec mirror :: "'a tree \ 'a tree" where - "mirror (Twig) = Twig " - | "mirror (Leaf a) = Leaf a " - | "mirror (Branch l r) = Branch (mirror r) (mirror l)" - -theorem "plant (rev (leaves xt)) = mirror xt" - quickcheck[random, expect = counterexample] - quickcheck[exhaustive, expect = counterexample] - --{* Wrong! *} - oops - -theorem "plant((leaves xt) @ (leaves yt)) = Branch xt yt" - quickcheck[random, expect = counterexample] - quickcheck[exhaustive, expect = counterexample] - --{* Wrong! *} - oops - -datatype 'a ntree = Tip "'a" | Node "'a" "'a ntree" "'a ntree" - -primrec inOrder :: "'a ntree \ 'a list" where - "inOrder (Tip a)= [a]" - | "inOrder (Node f x y) = (inOrder x)@[f]@(inOrder y)" - -primrec root :: "'a ntree \ 'a" where - "root (Tip a) = a" - | "root (Node f x y) = f" - -theorem "hd (inOrder xt) = root xt" - quickcheck[random, expect = counterexample] - quickcheck[exhaustive, expect = counterexample] - --{* Wrong! *} - oops - - -subsection {* Exhaustive Testing beats Random Testing *} - -text {* Here are some examples from mutants from the List theory -where exhaustive testing beats random testing *} - -lemma - "[] ~= xs ==> hd xs = last (x # xs)" -quickcheck[random] -quickcheck[exhaustive, expect = counterexample] -oops - -lemma - assumes "!!i. [| i < n; i < length xs |] ==> P (xs ! i)" "n < length xs ==> ~ P (xs ! n)" - shows "drop n xs = takeWhile P xs" -quickcheck[random, iterations = 10000, quiet] -quickcheck[exhaustive, expect = counterexample] -oops - -lemma - "i < length (List.transpose (List.transpose xs)) ==> xs ! i = map (%xs. xs ! i) [ys<-xs. i < length ys]" -quickcheck[random, iterations = 10000] -quickcheck[exhaustive, expect = counterexample] -oops - -lemma - "i < n - m ==> f (lcm m i) = map f [m.. f (lcm m i) = map f [m.. k <= listsum ns" -quickcheck[random, iterations = 10000, finite_types = false, quiet] -quickcheck[exhaustive, finite_types = false, expect = counterexample] -oops - -lemma - "[| ys = x # xs1; zs = xs1 @ xs |] ==> ys @ zs = x # xs" -quickcheck[random, iterations = 10000] -quickcheck[exhaustive, expect = counterexample] -oops - -lemma -"i < length xs ==> take (Suc i) xs = [] @ xs ! i # take i xs" -quickcheck[random, iterations = 10000] -quickcheck[exhaustive, expect = counterexample] -oops - -lemma - "i < length xs ==> take (Suc i) xs = (xs ! i # xs) @ take i []" -quickcheck[random, iterations = 10000] -quickcheck[exhaustive, expect = counterexample] -oops - -lemma - "[| sorted (rev (map length xs)); i < length xs |] ==> xs ! i = map (%ys. ys ! i) [ys<-remdups xs. i < length ys]" -quickcheck[random] -quickcheck[exhaustive, expect = counterexample] -oops - -lemma - "[| sorted (rev (map length xs)); i < length xs |] ==> xs ! i = map (%ys. ys ! i) [ys<-List.transpose xs. length ys \ {..x. P x) \ (\x. P x)" - quickcheck[random, expect = counterexample] - quickcheck[exhaustive, expect = counterexample] -oops - -lemma "(\x. \y. P x y) \ (\y. \x. P x y)" - quickcheck[random, expect = counterexample] - quickcheck[expect = counterexample] -oops - -lemma "(\x. P x) \ (EX! x. P x)" - quickcheck[random, expect = counterexample] - quickcheck[expect = counterexample] -oops - - -subsection {* Examples with sets *} - -lemma - "{} = A Un - A" -quickcheck[exhaustive, expect = counterexample] -oops - -lemma - "[| bij_betw f A B; bij_betw f C D |] ==> bij_betw f (A Un C) (B Un D)" -quickcheck[exhaustive, expect = counterexample] -oops - - -subsection {* Examples with relations *} - -lemma - "acyclic (R :: ('a * 'a) set) ==> acyclic S ==> acyclic (R Un S)" -quickcheck[exhaustive, expect = counterexample] -oops - -lemma - "acyclic (R :: (nat * nat) set) ==> acyclic S ==> acyclic (R Un S)" -quickcheck[exhaustive, expect = counterexample] -oops - -(* FIXME: some dramatic performance decrease after changing the code equation of the ntrancl *) -lemma - "(x, z) : rtrancl (R Un S) ==> \ y. (x, y) : rtrancl R & (y, z) : rtrancl S" -(*quickcheck[exhaustive, expect = counterexample]*) -oops - -lemma - "wf (R :: ('a * 'a) set) ==> wf S ==> wf (R Un S)" -quickcheck[exhaustive, expect = counterexample] -oops - -lemma - "wf (R :: (nat * nat) set) ==> wf S ==> wf (R Un S)" -quickcheck[exhaustive, expect = counterexample] -oops - -lemma - "wf (R :: (int * int) set) ==> wf S ==> wf (R Un S)" -quickcheck[exhaustive, expect = counterexample] -oops - - -subsection {* Examples with the descriptive operator *} - -lemma - "(THE x. x = a) = b" -quickcheck[random, expect = counterexample] -quickcheck[exhaustive, expect = counterexample] -oops - -subsection {* Examples with Multisets *} - -lemma - "X + Y = Y + (Z :: 'a multiset)" -quickcheck[random, expect = counterexample] -quickcheck[exhaustive, expect = counterexample] -oops - -lemma - "X - Y = Y - (Z :: 'a multiset)" -quickcheck[random, expect = counterexample] -quickcheck[exhaustive, expect = counterexample] -oops - -lemma - "N + M - N = (N::'a multiset)" -quickcheck[random, expect = counterexample] -quickcheck[exhaustive, expect = counterexample] -oops - -subsection {* Examples with numerical types *} - -text {* -Quickcheck supports the common types nat, int, rat and real. -*} - -lemma - "(x :: nat) > 0 ==> y > 0 ==> z > 0 ==> x * x + y * y \ z * z" -quickcheck[exhaustive, size = 10, expect = counterexample] -quickcheck[random, size = 10] -oops - -lemma - "(x :: int) > 0 ==> y > 0 ==> z > 0 ==> x * x + y * y \ z * z" -quickcheck[exhaustive, size = 10, expect = counterexample] -quickcheck[random, size = 10] -oops - -lemma - "(x :: rat) > 0 ==> y > 0 ==> z > 0 ==> x * x + y * y \ z * z" -quickcheck[exhaustive, size = 10, expect = counterexample] -quickcheck[random, size = 10] -oops - -lemma "(x :: rat) >= 0" -quickcheck[random, expect = counterexample] -quickcheck[exhaustive, expect = counterexample] -oops - -lemma - "(x :: real) > 0 ==> y > 0 ==> z > 0 ==> x * x + y * y \ z * z" -quickcheck[exhaustive, size = 10, expect = counterexample] -quickcheck[random, size = 10] -oops - -lemma "(x :: real) >= 0" -quickcheck[random, expect = counterexample] -quickcheck[exhaustive, expect = counterexample] -oops - -subsubsection {* floor and ceiling functions *} - -lemma - "floor x + floor y = floor (x + y :: rat)" -quickcheck[expect = counterexample] -oops - -lemma - "floor x + floor y = floor (x + y :: real)" -quickcheck[expect = counterexample] -oops - -lemma - "ceiling x + ceiling y = ceiling (x + y :: rat)" -quickcheck[expect = counterexample] -oops - -lemma - "ceiling x + ceiling y = ceiling (x + y :: real)" -quickcheck[expect = counterexample] -oops - -subsection {* Examples with abstract types *} - -lemma - "Dlist.length (Dlist.remove x xs) = Dlist.length xs - 1" -quickcheck[exhaustive] -quickcheck[random] -oops - -lemma - "Dlist.length (Dlist.insert x xs) = Dlist.length xs + 1" -quickcheck[exhaustive] -quickcheck[random] -oops - -subsection {* Examples with Records *} - -record point = - xpos :: nat - ypos :: nat - -lemma - "xpos r = xpos r' ==> r = r'" -quickcheck[exhaustive, expect = counterexample] -quickcheck[random, expect = counterexample] -oops - -datatype colour = Red | Green | Blue - -record cpoint = point + - colour :: colour - -lemma - "xpos r = xpos r' ==> ypos r = ypos r' ==> (r :: cpoint) = r'" -quickcheck[exhaustive, expect = counterexample] -quickcheck[random, expect = counterexample] -oops - -subsection {* Examples with locales *} - -locale Truth - -context Truth -begin - -lemma "False" -quickcheck[exhaustive, expect = counterexample] -oops - -end - -interpretation Truth . - -context Truth -begin - -lemma "False" -quickcheck[exhaustive, expect = counterexample] -oops - -end - -locale antisym = - fixes R - assumes "R x y --> R y x --> x = y" -begin - -lemma - "R x y --> R y z --> R x z" -quickcheck[exhaustive, finite_type_size = 2, expect = no_counterexample] -quickcheck[exhaustive, expect = counterexample] -oops - -end - -subsection {* Examples with HOL quantifiers *} - -lemma - "\ xs ys. xs = [] --> xs = ys" -quickcheck[exhaustive, expect = counterexample] -oops - -lemma - "ys = [] --> (\xs. xs = [] --> xs = y # ys)" -quickcheck[exhaustive, expect = counterexample] -oops - -lemma - "\xs. (\ ys. ys = []) --> xs = ys" -quickcheck[exhaustive, expect = counterexample] -oops - -subsection {* Examples with underspecified/partial functions *} - -lemma - "xs = [] ==> hd xs \ x" -quickcheck[exhaustive, expect = no_counterexample] -quickcheck[random, report = false, expect = no_counterexample] -quickcheck[random, report = true, expect = no_counterexample] -oops - -lemma - "xs = [] ==> hd xs = x" -quickcheck[exhaustive, expect = no_counterexample] -quickcheck[random, report = false, expect = no_counterexample] -quickcheck[random, report = true, expect = no_counterexample] -oops - -lemma "xs = [] ==> hd xs = x ==> x = y" -quickcheck[exhaustive, expect = no_counterexample] -quickcheck[random, report = false, expect = no_counterexample] -quickcheck[random, report = true, expect = no_counterexample] -oops - -text {* with the simple testing scheme *} - -setup {* Exhaustive_Generators.setup_exhaustive_datatype_interpretation *} -declare [[quickcheck_full_support = false]] - -lemma - "xs = [] ==> hd xs \ x" -quickcheck[exhaustive, expect = no_counterexample] -oops - -lemma - "xs = [] ==> hd xs = x" -quickcheck[exhaustive, expect = no_counterexample] -oops - -lemma "xs = [] ==> hd xs = x ==> x = y" -quickcheck[exhaustive, expect = no_counterexample] -oops - -declare [[quickcheck_full_support = true]] - -end