diff -r 282f3b06fa86 -r f4635657d66f src/HOL/Library/Convex.thy --- a/src/HOL/Library/Convex.thy Mon Apr 14 10:55:56 2014 +0200 +++ b/src/HOL/Library/Convex.thy Mon Apr 14 13:08:17 2014 +0200 @@ -138,7 +138,7 @@ with `0 \ setsum a s` have "0 < setsum a s" by simp then have "(\j\s. (a j / setsum a s) *\<^sub>R y j) \ C" using `\j\s. 0 \ a j` and `\j\s. y j \ C` - by (simp add: IH divide_nonneg_pos setsum_divide_distrib [symmetric]) + by (simp add: IH setsum_divide_distrib [symmetric]) from `convex C` and `y i \ C` and this and `0 \ a i` and `0 \ setsum a s` and `a i + setsum a s = 1` have "a i *\<^sub>R y i + setsum a s *\<^sub>R (\j\s. (a j / setsum a s) *\<^sub>R y j) \ C" @@ -432,9 +432,7 @@ then have "a i < 1" using asm by auto then have i0: "1 - a i > 0" by auto let ?a = "\j. a j / (1 - a i)" - { fix j assume "j \ s" - then have "?a j \ 0" - using i0 asms divide_nonneg_pos + { fix j assume "j \ s" with i0 asms have "?a j \ 0" by fastforce } note a_nonneg = this have "(\ j \ insert i s. a j) = 1" using asms by auto