diff -r 68751fe1c036 -r f4a308fdf664 src/HOL/Isar_Examples/Fibonacci.thy --- a/src/HOL/Isar_Examples/Fibonacci.thy Tue Aug 02 18:45:34 2016 +0200 +++ b/src/HOL/Isar_Examples/Fibonacci.thy Tue Aug 02 18:46:24 2016 +0200 @@ -15,7 +15,7 @@ section \Fib and Gcd commute\ theory Fibonacci -imports "../Number_Theory/Primes" + imports "../Number_Theory/Primes" begin text_raw \\<^footnote>\Isar version by Gertrud Bauer. Original tactic script by Larry @@ -28,10 +28,10 @@ subsection \Fibonacci numbers\ fun fib :: "nat \ nat" -where - "fib 0 = 0" -| "fib (Suc 0) = 1" -| "fib (Suc (Suc x)) = fib x + fib (Suc x)" + where + "fib 0 = 0" + | "fib (Suc 0) = 1" + | "fib (Suc (Suc x)) = fib x + fib (Suc x)" lemma [simp]: "fib (Suc n) > 0" by (induct n rule: fib.induct) simp_all