diff -r 839db6346cc8 -r f4b83f03cac9 src/HOL/Hyperreal/Ln.thy --- a/src/HOL/Hyperreal/Ln.thy Fri Jun 22 22:41:17 2007 +0200 +++ b/src/HOL/Hyperreal/Ln.thy Sat Jun 23 19:33:22 2007 +0200 @@ -150,7 +150,7 @@ lemma aux3: "(0::real) <= x ==> (1 + x + x^2)/(1 + x^2) <= 1 + x" apply (subst pos_divide_le_eq) apply (simp add: zero_compare_simps) - apply (simp add: ring_eq_simps zero_compare_simps) + apply (simp add: ring_simps zero_compare_simps) done lemma aux4: "0 <= (x::real) ==> x <= 1 ==> exp (x - x^2) <= 1 + x" @@ -199,7 +199,7 @@ proof - assume a: "0 <= (x::real)" and b: "x < 1" have "(1 - x) * (1 + x + x^2) = (1 - x^3)" - by (simp add: ring_eq_simps power2_eq_square power3_eq_cube) + by (simp add: ring_simps power2_eq_square power3_eq_cube) also have "... <= 1" by (auto intro: zero_le_power simp add: a) finally have "(1 - x) * (1 + x + x ^ 2) <= 1" . @@ -283,12 +283,9 @@ have e: "-x - 2 * x^2 <= - x / (1 - x)" apply (rule mult_imp_le_div_pos) apply (insert prems, force) - apply (auto simp add: ring_eq_simps power2_eq_square) - apply (subgoal_tac "- (x * x) + x * (x * (x * 2)) = x^2 * (2 * x - 1)") - apply (erule ssubst) - apply (rule mult_nonneg_nonpos) - apply auto - apply (auto simp add: ring_eq_simps power2_eq_square) + apply (auto simp add: ring_simps power2_eq_square) + apply(insert mult_right_le_one_le[of "x*x" "2*x"]) + apply (simp) done from e d show "- x - 2 * x^2 <= ln (1 - x)" by (rule order_trans) @@ -404,7 +401,7 @@ apply simp apply (subst ln_div [THEN sym]) apply arith - apply (auto simp add: ring_eq_simps add_frac_eq frac_eq_eq + apply (auto simp add: ring_simps add_frac_eq frac_eq_eq add_divide_distrib power2_eq_square) apply (rule mult_pos_pos, assumption)+ apply assumption @@ -423,7 +420,7 @@ apply auto done have "x * ln y - x * ln x = x * (ln y - ln x)" - by (simp add: ring_eq_simps) + by (simp add: ring_simps) also have "... = x * ln(y / x)" apply (subst ln_div) apply (rule b, rule a, rule refl)