diff -r 2ae16e3d8b6d -r f4ba736040fa src/HOL/Tools/Transfer/transfer.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Tools/Transfer/transfer.ML Thu Apr 10 17:48:18 2014 +0200 @@ -0,0 +1,868 @@ +(* Title: HOL/Tools/Transfer/transfer.ML + Author: Brian Huffman, TU Muenchen + Author: Ondrej Kuncar, TU Muenchen + +Generic theorem transfer method. +*) + +signature TRANSFER = +sig + type pred_data + val rel_eq_onp: pred_data -> thm + + val bottom_rewr_conv: thm list -> conv + val top_rewr_conv: thm list -> conv + + val prep_conv: conv + val get_transfer_raw: Proof.context -> thm list + val get_relator_eq_item_net: Proof.context -> thm Item_Net.T + val get_relator_eq: Proof.context -> thm list + val get_sym_relator_eq: Proof.context -> thm list + val get_relator_eq_raw: Proof.context -> thm list + val get_relator_domain: Proof.context -> thm list + val morph_pred_data: morphism -> pred_data -> pred_data + val lookup_pred_data: Proof.context -> string -> pred_data option + val update_pred_data: string -> pred_data -> Context.generic -> Context.generic + val get_compound_lhs: Proof.context -> (term * thm) Item_Net.T + val get_compound_rhs: Proof.context -> (term * thm) Item_Net.T + val transfer_add: attribute + val transfer_del: attribute + val transfer_raw_add: thm -> Context.generic -> Context.generic + val transfer_raw_del: thm -> Context.generic -> Context.generic + val transferred_attribute: thm list -> attribute + val untransferred_attribute: thm list -> attribute + val prep_transfer_domain_thm: Proof.context -> thm -> thm + val transfer_domain_add: attribute + val transfer_domain_del: attribute + val transfer_rule_of_term: Proof.context -> bool -> term -> thm + val transfer_rule_of_lhs: Proof.context -> term -> thm + val eq_tac: Proof.context -> int -> tactic + val transfer_step_tac: Proof.context -> int -> tactic + val transfer_tac: bool -> Proof.context -> int -> tactic + val transfer_prover_tac: Proof.context -> int -> tactic + val gen_frees_tac: (string * typ) list -> Proof.context -> int -> tactic + val setup: theory -> theory +end + +structure Transfer : TRANSFER = +struct + +(** Theory Data **) + +val compound_xhs_empty_net = Item_Net.init (Thm.eq_thm_prop o pairself snd) (single o fst); +val rewr_rules = Item_Net.init Thm.eq_thm_prop (single o fst o HOLogic.dest_eq + o HOLogic.dest_Trueprop o Thm.concl_of); + +type pred_data = {rel_eq_onp: thm} + +val rel_eq_onp = #rel_eq_onp + +structure Data = Generic_Data +( + type T = + { transfer_raw : thm Item_Net.T, + known_frees : (string * typ) list, + compound_lhs : (term * thm) Item_Net.T, + compound_rhs : (term * thm) Item_Net.T, + relator_eq : thm Item_Net.T, + relator_eq_raw : thm Item_Net.T, + relator_domain : thm Item_Net.T, + pred_data : pred_data Symtab.table } + val empty = + { transfer_raw = Thm.intro_rules, + known_frees = [], + compound_lhs = compound_xhs_empty_net, + compound_rhs = compound_xhs_empty_net, + relator_eq = rewr_rules, + relator_eq_raw = Thm.full_rules, + relator_domain = Thm.full_rules, + pred_data = Symtab.empty } + val extend = I + fun merge + ( { transfer_raw = t1, known_frees = k1, + compound_lhs = l1, + compound_rhs = c1, relator_eq = r1, + relator_eq_raw = rw1, relator_domain = rd1, + pred_data = pd1 }, + { transfer_raw = t2, known_frees = k2, + compound_lhs = l2, + compound_rhs = c2, relator_eq = r2, + relator_eq_raw = rw2, relator_domain = rd2, + pred_data = pd2 } ) = + { transfer_raw = Item_Net.merge (t1, t2), + known_frees = Library.merge (op =) (k1, k2), + compound_lhs = Item_Net.merge (l1, l2), + compound_rhs = Item_Net.merge (c1, c2), + relator_eq = Item_Net.merge (r1, r2), + relator_eq_raw = Item_Net.merge (rw1, rw2), + relator_domain = Item_Net.merge (rd1, rd2), + pred_data = Symtab.merge (K true) (pd1, pd2) } +) + +fun get_transfer_raw ctxt = ctxt + |> (Item_Net.content o #transfer_raw o Data.get o Context.Proof) + +fun get_known_frees ctxt = ctxt + |> (#known_frees o Data.get o Context.Proof) + +fun get_compound_lhs ctxt = ctxt + |> (#compound_lhs o Data.get o Context.Proof) + +fun get_compound_rhs ctxt = ctxt + |> (#compound_rhs o Data.get o Context.Proof) + +fun get_relator_eq_item_net ctxt = (#relator_eq o Data.get o Context.Proof) ctxt + +fun get_relator_eq ctxt = ctxt + |> (Item_Net.content o #relator_eq o Data.get o Context.Proof) + |> map safe_mk_meta_eq + +fun get_sym_relator_eq ctxt = ctxt + |> (Item_Net.content o #relator_eq o Data.get o Context.Proof) + |> map (Thm.symmetric o safe_mk_meta_eq) + +fun get_relator_eq_raw ctxt = ctxt + |> (Item_Net.content o #relator_eq_raw o Data.get o Context.Proof) + +fun get_relator_domain ctxt = ctxt + |> (Item_Net.content o #relator_domain o Data.get o Context.Proof) + +fun get_pred_data ctxt = ctxt + |> (#pred_data o Data.get o Context.Proof) + +fun map_data f1 f2 f3 f4 f5 f6 f7 f8 + { transfer_raw, known_frees, compound_lhs, compound_rhs, + relator_eq, relator_eq_raw, relator_domain, pred_data } = + { transfer_raw = f1 transfer_raw, + known_frees = f2 known_frees, + compound_lhs = f3 compound_lhs, + compound_rhs = f4 compound_rhs, + relator_eq = f5 relator_eq, + relator_eq_raw = f6 relator_eq_raw, + relator_domain = f7 relator_domain, + pred_data = f8 pred_data } + +fun map_transfer_raw f = map_data f I I I I I I I +fun map_known_frees f = map_data I f I I I I I I +fun map_compound_lhs f = map_data I I f I I I I I +fun map_compound_rhs f = map_data I I I f I I I I +fun map_relator_eq f = map_data I I I I f I I I +fun map_relator_eq_raw f = map_data I I I I I f I I +fun map_relator_domain f = map_data I I I I I I f I +fun map_pred_data f = map_data I I I I I I I f + +fun add_transfer_thm thm = Data.map + (map_transfer_raw (Item_Net.update thm) o + map_compound_lhs + (case HOLogic.dest_Trueprop (Thm.concl_of thm) of + Const (@{const_name Rel}, _) $ _ $ (lhs as (_ $ _)) $ _ => + Item_Net.update (lhs, thm) + | _ => I) o + map_compound_rhs + (case HOLogic.dest_Trueprop (Thm.concl_of thm) of + Const (@{const_name Rel}, _) $ _ $ _ $ (rhs as (_ $ _)) => + Item_Net.update (rhs, thm) + | _ => I) o + map_known_frees (Term.add_frees (Thm.concl_of thm))) + +fun del_transfer_thm thm = Data.map + (map_transfer_raw (Item_Net.remove thm) o + map_compound_lhs + (case HOLogic.dest_Trueprop (Thm.concl_of thm) of + Const (@{const_name Rel}, _) $ _ $ (lhs as (_ $ _)) $ _ => + Item_Net.remove (lhs, thm) + | _ => I) o + map_compound_rhs + (case HOLogic.dest_Trueprop (Thm.concl_of thm) of + Const (@{const_name Rel}, _) $ _ $ _ $ (rhs as (_ $ _)) => + Item_Net.remove (rhs, thm) + | _ => I)) + +fun transfer_raw_add thm ctxt = add_transfer_thm thm ctxt +fun transfer_raw_del thm ctxt = del_transfer_thm thm ctxt + +(** Conversions **) + +fun bottom_rewr_conv rewrs = Conv.bottom_conv (K (Conv.try_conv (Conv.rewrs_conv rewrs))) @{context} +fun top_rewr_conv rewrs = Conv.top_conv (K (Conv.try_conv (Conv.rewrs_conv rewrs))) @{context} + +fun transfer_rel_conv conv = + Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.fun2_conv (Conv.arg_conv conv))) + +val Rel_rule = Thm.symmetric @{thm Rel_def} + +fun dest_funcT cT = + (case Thm.dest_ctyp cT of [T, U] => (T, U) + | _ => raise TYPE ("dest_funcT", [Thm.typ_of cT], [])) + +fun Rel_conv ct = + let val (cT, cT') = dest_funcT (Thm.ctyp_of_term ct) + val (cU, _) = dest_funcT cT' + in Drule.instantiate' [SOME cT, SOME cU] [SOME ct] Rel_rule end + +(* Conversion to preprocess a transfer rule *) +fun safe_Rel_conv ct = + Conv.try_conv (HOLogic.Trueprop_conv (Conv.fun_conv (Conv.fun_conv Rel_conv))) ct + +fun prep_conv ct = ( + Conv.implies_conv safe_Rel_conv prep_conv + else_conv + safe_Rel_conv + else_conv + Conv.all_conv) ct + +(** Replacing explicit equalities with is_equality premises **) + +fun mk_is_equality t = + Const (@{const_name is_equality}, Term.fastype_of t --> HOLogic.boolT) $ t + +val is_equality_lemma = + @{lemma "(!!R. is_equality R ==> PROP (P R)) == PROP (P (op =))" + by (unfold is_equality_def, rule, drule meta_spec, + erule meta_mp, rule refl, simp)} + +fun gen_abstract_equalities ctxt (dest : term -> term * (term -> term)) thm = + let + val thy = Thm.theory_of_thm thm + val prop = Thm.prop_of thm + val (t, mk_prop') = dest prop + (* Only consider "op =" at non-base types *) + fun is_eq (Const (@{const_name HOL.eq}, Type ("fun", [T, _]))) = + (case T of Type (_, []) => false | _ => true) + | is_eq _ = false + val add_eqs = Term.fold_aterms (fn t => if is_eq t then insert (op =) t else I) + val eq_consts = rev (add_eqs t []) + val eqTs = map (snd o dest_Const) eq_consts + val used = Term.add_free_names prop [] + val names = map (K "") eqTs |> Name.variant_list used + val frees = map Free (names ~~ eqTs) + val prems = map (HOLogic.mk_Trueprop o mk_is_equality) frees + val prop1 = mk_prop' (Term.subst_atomic (eq_consts ~~ frees) t) + val prop2 = fold Logic.all frees (Logic.list_implies (prems, prop1)) + val cprop = Thm.cterm_of thy prop2 + val equal_thm = Raw_Simplifier.rewrite ctxt false [is_equality_lemma] cprop + fun forall_elim thm = Thm.forall_elim_vars (Thm.maxidx_of thm + 1) thm + in + forall_elim (thm COMP (equal_thm COMP @{thm equal_elim_rule2})) + end + handle TERM _ => thm + +fun abstract_equalities_transfer ctxt thm = + let + fun dest prop = + let + val prems = Logic.strip_imp_prems prop + val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop) + val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl) + in + (rel, fn rel' => + Logic.list_implies (prems, HOLogic.mk_Trueprop (rel' $ x $ y))) + end + val contracted_eq_thm = + Conv.fconv_rule (transfer_rel_conv (bottom_rewr_conv (get_relator_eq ctxt))) thm + handle CTERM _ => thm + in + gen_abstract_equalities ctxt dest contracted_eq_thm + end + +fun abstract_equalities_relator_eq ctxt rel_eq_thm = + gen_abstract_equalities ctxt (fn x => (x, I)) + (rel_eq_thm RS @{thm is_equality_def [THEN iffD2]}) + +fun abstract_equalities_domain ctxt thm = + let + fun dest prop = + let + val prems = Logic.strip_imp_prems prop + val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop) + val ((eq, dom), y) = apfst Term.dest_comb (Term.dest_comb concl) + in + (dom, fn dom' => Logic.list_implies (prems, HOLogic.mk_Trueprop (eq $ dom' $ y))) + end + fun transfer_rel_conv conv = + Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.arg1_conv (Conv.arg_conv conv))) + val contracted_eq_thm = + Conv.fconv_rule (transfer_rel_conv (bottom_rewr_conv (get_relator_eq ctxt))) thm + in + gen_abstract_equalities ctxt dest contracted_eq_thm + end + + +(** Replacing explicit Domainp predicates with Domainp assumptions **) + +fun mk_Domainp_assm (T, R) = + HOLogic.mk_eq ((Const (@{const_name Domainp}, Term.fastype_of T --> Term.fastype_of R) $ T), R) + +val Domainp_lemma = + @{lemma "(!!R. Domainp T = R ==> PROP (P R)) == PROP (P (Domainp T))" + by (rule, drule meta_spec, + erule meta_mp, rule refl, simp)} + +fun fold_Domainp f (t as Const (@{const_name Domainp},_) $ (Var (_,_))) = f t + | fold_Domainp f (t $ u) = fold_Domainp f t #> fold_Domainp f u + | fold_Domainp f (Abs (_, _, t)) = fold_Domainp f t + | fold_Domainp _ _ = I + +fun subst_terms tab t = + let + val t' = Termtab.lookup tab t + in + case t' of + SOME t' => t' + | NONE => + (case t of + u $ v => (subst_terms tab u) $ (subst_terms tab v) + | Abs (a, T, t) => Abs (a, T, subst_terms tab t) + | t => t) + end + +fun gen_abstract_domains ctxt (dest : term -> term * (term -> term)) thm = + let + val thy = Thm.theory_of_thm thm + val prop = Thm.prop_of thm + val (t, mk_prop') = dest prop + val Domainp_tms = rev (fold_Domainp (fn t => insert op= t) t []) + val Domainp_Ts = map (snd o dest_funT o snd o dest_Const o fst o dest_comb) Domainp_tms + val used = Term.add_free_names t [] + val rels = map (snd o dest_comb) Domainp_tms + val rel_names = map (fst o fst o dest_Var) rels + val names = map (fn name => ("D" ^ name)) rel_names |> Name.variant_list used + val frees = map Free (names ~~ Domainp_Ts) + val prems = map (HOLogic.mk_Trueprop o mk_Domainp_assm) (rels ~~ frees); + val t' = subst_terms (fold Termtab.update (Domainp_tms ~~ frees) Termtab.empty) t + val prop1 = fold Logic.all frees (Logic.list_implies (prems, mk_prop' t')) + val prop2 = Logic.list_rename_params (rev names) prop1 + val cprop = Thm.cterm_of thy prop2 + val equal_thm = Raw_Simplifier.rewrite ctxt false [Domainp_lemma] cprop + fun forall_elim thm = Thm.forall_elim_vars (Thm.maxidx_of thm + 1) thm; + in + forall_elim (thm COMP (equal_thm COMP @{thm equal_elim_rule2})) + end + handle TERM _ => thm + +fun abstract_domains_transfer ctxt thm = + let + fun dest prop = + let + val prems = Logic.strip_imp_prems prop + val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop) + val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl) + in + (x, fn x' => + Logic.list_implies (prems, HOLogic.mk_Trueprop (rel $ x' $ y))) + end + in + gen_abstract_domains ctxt dest thm + end + +fun abstract_domains_relator_domain ctxt thm = + let + fun dest prop = + let + val prems = Logic.strip_imp_prems prop + val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop) + val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl) + in + (y, fn y' => + Logic.list_implies (prems, HOLogic.mk_Trueprop (rel $ x $ y'))) + end + in + gen_abstract_domains ctxt dest thm + end + +fun detect_transfer_rules thm = + let + fun is_transfer_rule tm = case (HOLogic.dest_Trueprop tm) of + (Const (@{const_name HOL.eq}, _)) $ ((Const (@{const_name Domainp}, _)) $ _) $ _ => false + | _ $ _ $ _ => true + | _ => false + fun safe_transfer_rule_conv ctm = + if is_transfer_rule (term_of ctm) then safe_Rel_conv ctm else Conv.all_conv ctm + in + Conv.fconv_rule (Conv.prems_conv ~1 safe_transfer_rule_conv) thm + end + +(** Adding transfer domain rules **) + +fun prep_transfer_domain_thm ctxt thm = + (abstract_equalities_domain ctxt o detect_transfer_rules) thm + +fun add_transfer_domain_thm thm ctxt = (add_transfer_thm o + prep_transfer_domain_thm (Context.proof_of ctxt)) thm ctxt + +fun del_transfer_domain_thm thm ctxt = (del_transfer_thm o + prep_transfer_domain_thm (Context.proof_of ctxt)) thm ctxt + +(** Transfer proof method **) + +val post_simps = + @{thms transfer_forall_eq [symmetric] + transfer_implies_eq [symmetric] transfer_bforall_unfold} + +fun gen_frees_tac keepers ctxt = SUBGOAL (fn (t, i) => + let + val keepers = keepers @ get_known_frees ctxt + val vs = rev (Term.add_frees t []) + val vs' = filter_out (member (op =) keepers) vs + in + Induct.arbitrary_tac ctxt 0 vs' i + end) + +fun mk_relT (T, U) = T --> U --> HOLogic.boolT + +fun mk_Rel t = + let val T = fastype_of t + in Const (@{const_name Transfer.Rel}, T --> T) $ t end + +fun transfer_rule_of_terms (prj : typ * typ -> typ) ctxt tab t u = + let + val thy = Proof_Context.theory_of ctxt + (* precondition: prj(T,U) must consist of only TFrees and type "fun" *) + fun rel (T as Type ("fun", [T1, T2])) (U as Type ("fun", [U1, U2])) = + let + val r1 = rel T1 U1 + val r2 = rel T2 U2 + val rT = fastype_of r1 --> fastype_of r2 --> mk_relT (T, U) + in + Const (@{const_name rel_fun}, rT) $ r1 $ r2 + end + | rel T U = + let + val (a, _) = dest_TFree (prj (T, U)) + in + Free (the (AList.lookup (op =) tab a), mk_relT (T, U)) + end + fun zip _ thms (Bound i) (Bound _) = (nth thms i, []) + | zip ctxt thms (Abs (x, T, t)) (Abs (y, U, u)) = + let + val ([x', y'], ctxt') = Variable.variant_fixes [x, y] ctxt + val prop = mk_Rel (rel T U) $ Free (x', T) $ Free (y', U) + val cprop = Thm.cterm_of thy (HOLogic.mk_Trueprop prop) + val thm0 = Thm.assume cprop + val (thm1, hyps) = zip ctxt' (thm0 :: thms) t u + val ((r1, x), y) = apfst Thm.dest_comb (Thm.dest_comb (Thm.dest_arg cprop)) + val r2 = Thm.dest_fun2 (Thm.dest_arg (cprop_of thm1)) + val (a1, (b1, _)) = apsnd dest_funcT (dest_funcT (ctyp_of_term r1)) + val (a2, (b2, _)) = apsnd dest_funcT (dest_funcT (ctyp_of_term r2)) + val tinsts = [SOME a1, SOME b1, SOME a2, SOME b2] + val insts = [SOME (Thm.dest_arg r1), SOME (Thm.dest_arg r2)] + val rule = Drule.instantiate' tinsts insts @{thm Rel_abs} + val thm2 = Thm.forall_intr x (Thm.forall_intr y (Thm.implies_intr cprop thm1)) + in + (thm2 COMP rule, hyps) + end + | zip ctxt thms (f $ t) (g $ u) = + let + val (thm1, hyps1) = zip ctxt thms f g + val (thm2, hyps2) = zip ctxt thms t u + in + (thm2 RS (thm1 RS @{thm Rel_app}), hyps1 @ hyps2) + end + | zip _ _ t u = + let + val T = fastype_of t + val U = fastype_of u + val prop = mk_Rel (rel T U) $ t $ u + val cprop = Thm.cterm_of thy (HOLogic.mk_Trueprop prop) + in + (Thm.assume cprop, [cprop]) + end + val r = mk_Rel (rel (fastype_of t) (fastype_of u)) + val goal = HOLogic.mk_Trueprop (r $ t $ u) + val rename = Thm.trivial (cterm_of thy goal) + val (thm, hyps) = zip ctxt [] t u + in + Drule.implies_intr_list hyps (thm RS rename) + end + +(* create a lambda term of the same shape as the given term *) +fun skeleton (is_atom : term -> bool) ctxt t = + let + fun dummy ctxt = + let + val (c, ctxt) = yield_singleton Variable.variant_fixes "a" ctxt + in + (Free (c, dummyT), ctxt) + end + fun go (Bound i) ctxt = (Bound i, ctxt) + | go (Abs (x, _, t)) ctxt = + let + val (t', ctxt) = go t ctxt + in + (Abs (x, dummyT, t'), ctxt) + end + | go (tu as (t $ u)) ctxt = + if is_atom tu andalso not (Term.is_open tu) then dummy ctxt else + let + val (t', ctxt) = go t ctxt + val (u', ctxt) = go u ctxt + in + (t' $ u', ctxt) + end + | go _ ctxt = dummy ctxt + in + go t ctxt |> fst |> Syntax.check_term ctxt |> + map_types (map_type_tfree (fn (a, _) => TFree (a, @{sort type}))) + end + +(** Monotonicity analysis **) + +(* TODO: Put extensible table in theory data *) +val monotab = + Symtab.make + [(@{const_name transfer_implies}, [~1, 1]), + (@{const_name transfer_forall}, [1])(*, + (@{const_name implies}, [~1, 1]), + (@{const_name All}, [1])*)] + +(* +Function bool_insts determines the set of boolean-relation variables +that can be instantiated to implies, rev_implies, or iff. + +Invariants: bool_insts p (t, u) requires that + u :: _ => _ => ... => bool, and + t is a skeleton of u +*) +fun bool_insts p (t, u) = + let + fun strip2 (t1 $ t2, u1 $ u2, tus) = + strip2 (t1, u1, (t2, u2) :: tus) + | strip2 x = x + fun or3 ((a, b, c), (x, y, z)) = (a orelse x, b orelse y, c orelse z) + fun go Ts p (Abs (_, T, t), Abs (_, _, u)) tab = go (T :: Ts) p (t, u) tab + | go Ts p (t, u) tab = + let + val (a, _) = dest_TFree (Term.body_type (Term.fastype_of1 (Ts, t))) + val (_, tf, tus) = strip2 (t, u, []) + val ps_opt = case tf of Const (c, _) => Symtab.lookup monotab c | _ => NONE + val tab1 = + case ps_opt of + SOME ps => + let + val ps' = map (fn x => p * x) (take (length tus) ps) + in + fold I (map2 (go Ts) ps' tus) tab + end + | NONE => tab + val tab2 = Symtab.make [(a, (p >= 0, p <= 0, is_none ps_opt))] + in + Symtab.join (K or3) (tab1, tab2) + end + val tab = go [] p (t, u) Symtab.empty + fun f (a, (true, false, false)) = SOME (a, @{const implies}) + | f (a, (false, true, false)) = SOME (a, @{const rev_implies}) + | f (a, (true, true, _)) = SOME (a, HOLogic.eq_const HOLogic.boolT) + | f _ = NONE + in + map_filter f (Symtab.dest tab) + end + +fun retrieve_terms t net = map fst (Item_Net.retrieve net t) + +fun matches_list ctxt term = + is_some o find_first (fn pat => Pattern.matches (Proof_Context.theory_of ctxt) (pat, term)) + +fun transfer_rule_of_term ctxt equiv t : thm = + let + val compound_rhs = get_compound_rhs ctxt + fun is_rhs t = compound_rhs |> retrieve_terms t |> matches_list ctxt t + val s = skeleton is_rhs ctxt t + val frees = map fst (Term.add_frees s []) + val tfrees = map fst (Term.add_tfrees s []) + fun prep a = "R" ^ Library.unprefix "'" a + val (rnames, ctxt') = Variable.variant_fixes (map prep tfrees) ctxt + val tab = tfrees ~~ rnames + fun prep a = the (AList.lookup (op =) tab a) + val thm = transfer_rule_of_terms fst ctxt' tab s t + val binsts = bool_insts (if equiv then 0 else 1) (s, t) + val cbool = @{ctyp bool} + val relT = @{typ "bool => bool => bool"} + val idx = Thm.maxidx_of thm + 1 + val thy = Proof_Context.theory_of ctxt + fun tinst (a, _) = (ctyp_of thy (TVar ((a, idx), @{sort type})), cbool) + fun inst (a, t) = (cterm_of thy (Var (Name.clean_index (prep a, idx), relT)), cterm_of thy t) + in + thm + |> Thm.generalize (tfrees, rnames @ frees) idx + |> Thm.instantiate (map tinst binsts, map inst binsts) + end + +fun transfer_rule_of_lhs ctxt t : thm = + let + val compound_lhs = get_compound_lhs ctxt + fun is_lhs t = compound_lhs |> retrieve_terms t |> matches_list ctxt t + val s = skeleton is_lhs ctxt t + val frees = map fst (Term.add_frees s []) + val tfrees = map fst (Term.add_tfrees s []) + fun prep a = "R" ^ Library.unprefix "'" a + val (rnames, ctxt') = Variable.variant_fixes (map prep tfrees) ctxt + val tab = tfrees ~~ rnames + fun prep a = the (AList.lookup (op =) tab a) + val thm = transfer_rule_of_terms snd ctxt' tab t s + val binsts = bool_insts 1 (s, t) + val cbool = @{ctyp bool} + val relT = @{typ "bool => bool => bool"} + val idx = Thm.maxidx_of thm + 1 + val thy = Proof_Context.theory_of ctxt + fun tinst (a, _) = (ctyp_of thy (TVar ((a, idx), @{sort type})), cbool) + fun inst (a, t) = (cterm_of thy (Var (Name.clean_index (prep a, idx), relT)), cterm_of thy t) + in + thm + |> Thm.generalize (tfrees, rnames @ frees) idx + |> Thm.instantiate (map tinst binsts, map inst binsts) + end + +fun eq_rules_tac eq_rules = TRY o REPEAT_ALL_NEW (resolve_tac eq_rules) + THEN_ALL_NEW rtac @{thm is_equality_eq} + +fun eq_tac ctxt = eq_rules_tac (get_relator_eq_raw ctxt) + +fun transfer_step_tac ctxt = (REPEAT_ALL_NEW (resolve_tac (get_transfer_raw ctxt)) + THEN_ALL_NEW (DETERM o eq_rules_tac (get_relator_eq_raw ctxt))) + +fun transfer_tac equiv ctxt i = + let + val pre_simps = @{thms transfer_forall_eq transfer_implies_eq} + val start_rule = + if equiv then @{thm transfer_start} else @{thm transfer_start'} + val rules = get_transfer_raw ctxt + val eq_rules = get_relator_eq_raw ctxt + (* allow unsolved subgoals only for standard transfer method, not for transfer' *) + val end_tac = if equiv then K all_tac else K no_tac + val err_msg = "Transfer failed to convert goal to an object-logic formula" + fun main_tac (t, i) = + rtac start_rule i THEN + (rtac (transfer_rule_of_term ctxt equiv (HOLogic.dest_Trueprop t)) + THEN_ALL_NEW + (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules) THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules)) + ORELSE' end_tac)) (i + 1) + handle TERM (_, ts) => raise TERM (err_msg, ts) + in + EVERY + [rewrite_goal_tac ctxt pre_simps i THEN + SUBGOAL main_tac i, + (* FIXME: rewrite_goal_tac does unwanted eta-contraction *) + rewrite_goal_tac ctxt post_simps i, + Goal.norm_hhf_tac ctxt i] + end + +fun transfer_prover_tac ctxt = SUBGOAL (fn (t, i) => + let + val rhs = (snd o Term.dest_comb o HOLogic.dest_Trueprop) t + val rule1 = transfer_rule_of_term ctxt false rhs + val rules = get_transfer_raw ctxt + val eq_rules = get_relator_eq_raw ctxt + val expand_eq_in_rel = transfer_rel_conv (top_rewr_conv [@{thm rel_fun_eq[symmetric,THEN eq_reflection]}]) + in + EVERY + [CONVERSION prep_conv i, + rtac @{thm transfer_prover_start} i, + ((rtac rule1 ORELSE' (CONVERSION expand_eq_in_rel THEN' rtac rule1)) + THEN_ALL_NEW + (REPEAT_ALL_NEW (resolve_tac rules) THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules))) (i+1), + rtac @{thm refl} i] + end) + +(** Transfer attribute **) + +fun transferred ctxt extra_rules thm = + let + val start_rule = @{thm transfer_start} + val start_rule' = @{thm transfer_start'} + val rules = extra_rules @ get_transfer_raw ctxt + val eq_rules = get_relator_eq_raw ctxt + val err_msg = "Transfer failed to convert goal to an object-logic formula" + val pre_simps = @{thms transfer_forall_eq transfer_implies_eq} + val thm1 = Drule.forall_intr_vars thm + val instT = rev (Term.add_tvars (Thm.full_prop_of thm1) []) + |> map (fn v as ((a, _), S) => (v, TFree (a, S))) + val thm2 = thm1 + |> Thm.certify_instantiate (instT, []) + |> Raw_Simplifier.rewrite_rule ctxt pre_simps + val ctxt' = Variable.declare_names (Thm.full_prop_of thm2) ctxt + val t = HOLogic.dest_Trueprop (Thm.concl_of thm2) + val rule = transfer_rule_of_lhs ctxt' t + val tac = + resolve_tac [thm2 RS start_rule', thm2 RS start_rule] 1 THEN + (rtac rule + THEN_ALL_NEW + (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules) + THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules)))) 1 + handle TERM (_, ts) => raise TERM (err_msg, ts) + val thm3 = Goal.prove_internal ctxt' [] @{cpat "Trueprop ?P"} (K tac) + val tnames = map (fst o dest_TFree o snd) instT + in + thm3 + |> Raw_Simplifier.rewrite_rule ctxt' post_simps + |> Simplifier.norm_hhf ctxt' + |> Drule.generalize (tnames, []) + |> Drule.zero_var_indexes + end +(* + handle THM _ => thm +*) + +fun untransferred ctxt extra_rules thm = + let + val start_rule = @{thm untransfer_start} + val rules = extra_rules @ get_transfer_raw ctxt + val eq_rules = get_relator_eq_raw ctxt + val err_msg = "Transfer failed to convert goal to an object-logic formula" + val pre_simps = @{thms transfer_forall_eq transfer_implies_eq} + val thm1 = Drule.forall_intr_vars thm + val instT = rev (Term.add_tvars (Thm.full_prop_of thm1) []) + |> map (fn v as ((a, _), S) => (v, TFree (a, S))) + val thm2 = thm1 + |> Thm.certify_instantiate (instT, []) + |> Raw_Simplifier.rewrite_rule ctxt pre_simps + val ctxt' = Variable.declare_names (Thm.full_prop_of thm2) ctxt + val t = HOLogic.dest_Trueprop (Thm.concl_of thm2) + val rule = transfer_rule_of_term ctxt' true t + val tac = + rtac (thm2 RS start_rule) 1 THEN + (rtac rule + THEN_ALL_NEW + (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules) + THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules)))) 1 + handle TERM (_, ts) => raise TERM (err_msg, ts) + val thm3 = Goal.prove_internal ctxt' [] @{cpat "Trueprop ?P"} (K tac) + val tnames = map (fst o dest_TFree o snd) instT + in + thm3 + |> Raw_Simplifier.rewrite_rule ctxt' post_simps + |> Simplifier.norm_hhf ctxt' + |> Drule.generalize (tnames, []) + |> Drule.zero_var_indexes + end + +(** Methods and attributes **) + +val free = Args.context -- Args.term >> (fn (_, Free v) => v | (ctxt, t) => + error ("Bad free variable: " ^ Syntax.string_of_term ctxt t)) + +val fixing = Scan.optional (Scan.lift (Args.$$$ "fixing" -- Args.colon) + |-- Scan.repeat free) [] + +fun transfer_method equiv : (Proof.context -> Proof.method) context_parser = + fixing >> (fn vs => fn ctxt => + SIMPLE_METHOD' (gen_frees_tac vs ctxt THEN' transfer_tac equiv ctxt)) + +val transfer_prover_method : (Proof.context -> Proof.method) context_parser = + Scan.succeed (fn ctxt => SIMPLE_METHOD' (transfer_prover_tac ctxt)) + +(* Attribute for transfer rules *) + +fun prep_rule ctxt = + abstract_domains_transfer ctxt o abstract_equalities_transfer ctxt o Conv.fconv_rule prep_conv + +val transfer_add = + Thm.declaration_attribute (fn thm => fn ctxt => + (add_transfer_thm o prep_rule (Context.proof_of ctxt)) thm ctxt) + +val transfer_del = + Thm.declaration_attribute (fn thm => fn ctxt => + (del_transfer_thm o prep_rule (Context.proof_of ctxt)) thm ctxt) + +val transfer_attribute = + Attrib.add_del transfer_add transfer_del + +(* Attributes for transfer domain rules *) + +val transfer_domain_add = Thm.declaration_attribute add_transfer_domain_thm + +val transfer_domain_del = Thm.declaration_attribute del_transfer_domain_thm + +val transfer_domain_attribute = + Attrib.add_del transfer_domain_add transfer_domain_del + +(* Attributes for transferred rules *) + +fun transferred_attribute thms = Thm.rule_attribute + (fn context => transferred (Context.proof_of context) thms) + +fun untransferred_attribute thms = Thm.rule_attribute + (fn context => untransferred (Context.proof_of context) thms) + +val transferred_attribute_parser = + Attrib.thms >> transferred_attribute + +val untransferred_attribute_parser = + Attrib.thms >> untransferred_attribute + +fun morph_pred_data phi {rel_eq_onp} = {rel_eq_onp = Morphism.thm phi rel_eq_onp} + +fun lookup_pred_data ctxt type_name = Symtab.lookup (get_pred_data ctxt) type_name + |> Option.map (morph_pred_data (Morphism.transfer_morphism (Proof_Context.theory_of ctxt))) + +fun update_pred_data type_name qinfo ctxt = + Data.map (map_pred_data (Symtab.update (type_name, qinfo))) ctxt + +(* Theory setup *) + +val relator_eq_setup = + let + val name = @{binding relator_eq} + fun add_thm thm context = context + |> Data.map (map_relator_eq (Item_Net.update thm)) + |> Data.map (map_relator_eq_raw + (Item_Net.update (abstract_equalities_relator_eq (Context.proof_of context) thm))) + fun del_thm thm context = context + |> Data.map (map_relator_eq (Item_Net.remove thm)) + |> Data.map (map_relator_eq_raw + (Item_Net.remove (abstract_equalities_relator_eq (Context.proof_of context) thm))) + val add = Thm.declaration_attribute add_thm + val del = Thm.declaration_attribute del_thm + val text = "declaration of relator equality rule (used by transfer method)" + val content = Item_Net.content o #relator_eq o Data.get + in + Attrib.setup name (Attrib.add_del add del) text + #> Global_Theory.add_thms_dynamic (name, content) + end + +val relator_domain_setup = + let + val name = @{binding relator_domain} + fun add_thm thm context = + let + val thm = abstract_domains_relator_domain (Context.proof_of context) thm + in + context |> Data.map (map_relator_domain (Item_Net.update thm)) |> add_transfer_domain_thm thm + end + fun del_thm thm context = + let + val thm = abstract_domains_relator_domain (Context.proof_of context) thm + in + context |> Data.map (map_relator_domain (Item_Net.remove thm)) |> del_transfer_domain_thm thm + end + val add = Thm.declaration_attribute add_thm + val del = Thm.declaration_attribute del_thm + val text = "declaration of relator domain rule (used by transfer method)" + val content = Item_Net.content o #relator_domain o Data.get + in + Attrib.setup name (Attrib.add_del add del) text + #> Global_Theory.add_thms_dynamic (name, content) + end + +val setup = + relator_eq_setup + #> relator_domain_setup + #> Attrib.setup @{binding transfer_rule} transfer_attribute + "transfer rule for transfer method" + #> Global_Theory.add_thms_dynamic + (@{binding transfer_raw}, Item_Net.content o #transfer_raw o Data.get) + #> Attrib.setup @{binding transfer_domain_rule} transfer_domain_attribute + "transfer domain rule for transfer method" + #> Attrib.setup @{binding transferred} transferred_attribute_parser + "raw theorem transferred to abstract theorem using transfer rules" + #> Attrib.setup @{binding untransferred} untransferred_attribute_parser + "abstract theorem transferred to raw theorem using transfer rules" + #> Global_Theory.add_thms_dynamic + (@{binding relator_eq_raw}, Item_Net.content o #relator_eq_raw o Data.get) + #> Method.setup @{binding transfer} (transfer_method true) + "generic theorem transfer method" + #> Method.setup @{binding transfer'} (transfer_method false) + "generic theorem transfer method" + #> Method.setup @{binding transfer_prover} transfer_prover_method + "for proving transfer rules" + +end