diff -r 6b38551d0798 -r f65265d71426 src/HOLCF/IOA/meta_theory/SimCorrectness.ML --- a/src/HOLCF/IOA/meta_theory/SimCorrectness.ML Sat May 27 21:18:51 2006 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,290 +0,0 @@ -(* Title: HOLCF/IOA/meta_theory/SimCorrectness.ML - ID: $Id$ - Author: Olaf Mueller -*) - -(* -------------------------------------------------------------------------------- *) - -section "corresp_ex_sim"; - - -(* ---------------------------------------------------------------- *) -(* corresp_ex_simC *) -(* ---------------------------------------------------------------- *) - - -Goal "corresp_ex_simC A R = (LAM ex. (%s. case ex of \ -\ nil => nil \ -\ | x##xs => (flift1 (%pr. let a = (fst pr); t = (snd pr); \ -\ T' = @t'. ? ex1. (t,t'):R & move A ex1 s a t' \ -\ in \ -\ (@cex. move A cex s a T') \ -\ @@ ((corresp_ex_simC A R $xs) T')) \ -\ $x) ))"; -by (rtac trans 1); -by (rtac fix_eq2 1); -by (rtac corresp_ex_simC_def 1); -by (rtac beta_cfun 1); -by (simp_tac (simpset() addsimps [flift1_def]) 1); -qed"corresp_ex_simC_unfold"; - -Goal "(corresp_ex_simC A R$UU) s=UU"; -by (stac corresp_ex_simC_unfold 1); -by (Simp_tac 1); -qed"corresp_ex_simC_UU"; - -Goal "(corresp_ex_simC A R$nil) s = nil"; -by (stac corresp_ex_simC_unfold 1); -by (Simp_tac 1); -qed"corresp_ex_simC_nil"; - -Goal "(corresp_ex_simC A R$((a,t)>>xs)) s = \ -\ (let T' = @t'. ? ex1. (t,t'):R & move A ex1 s a t' \ -\ in \ -\ (@cex. move A cex s a T') \ -\ @@ ((corresp_ex_simC A R$xs) T'))"; -by (rtac trans 1); -by (stac corresp_ex_simC_unfold 1); -by (asm_full_simp_tac (simpset() addsimps [Consq_def,flift1_def]) 1); -by (Simp_tac 1); -qed"corresp_ex_simC_cons"; - - -Addsimps [corresp_ex_simC_UU,corresp_ex_simC_nil,corresp_ex_simC_cons]; - - - -(* ------------------------------------------------------------------ *) -(* The following lemmata describe the definition *) -(* of move in more detail *) -(* ------------------------------------------------------------------ *) - -section"properties of move"; - -Delsimps [Let_def]; - -Goalw [is_simulation_def] - "[|is_simulation R C A; reachable C s; s -a--C-> t; (s,s'):R|] ==>\ -\ let T' = @t'. ? ex1. (t,t'):R & move A ex1 s' a t' in \ -\ (t,T'): R & move A (@ex2. move A ex2 s' a T') s' a T'"; - -(* Does not perform conditional rewriting on assumptions automatically as - usual. Instantiate all variables per hand. Ask Tobias?? *) -by (subgoal_tac "? t' ex. (t,t'):R & move A ex s' a t'" 1); -by (Asm_full_simp_tac 2); -by (etac conjE 2); -by (eres_inst_tac [("x","s")] allE 2); -by (eres_inst_tac [("x","s'")] allE 2); -by (eres_inst_tac [("x","t")] allE 2); -by (eres_inst_tac [("x","a")] allE 2); -by (Asm_full_simp_tac 2); -(* Go on as usual *) -by (etac exE 1); -by (dres_inst_tac [("x","t'"), - ("P","%t'. ? ex.(t,t'):R & move A ex s' a t'")] someI 1); -by (etac exE 1); -by (etac conjE 1); -by (asm_full_simp_tac (simpset() addsimps [Let_def]) 1); -by (res_inst_tac [("x","ex")] someI 1); -by (etac conjE 1); -by (assume_tac 1); -qed"move_is_move_sim"; - - -Addsimps [Let_def]; - -Goal - "[|is_simulation R C A; reachable C s; s-a--C-> t; (s,s'):R|] ==>\ -\ let T' = @t'. ? ex1. (t,t'):R & move A ex1 s' a t' in \ -\ is_exec_frag A (s',@x. move A x s' a T')"; -by (cut_inst_tac [] move_is_move_sim 1); -by (REPEAT (assume_tac 1)); -by (asm_full_simp_tac (simpset() addsimps [move_def,Let_def]) 1); -qed"move_subprop1_sim"; - -Goal - "[|is_simulation R C A; reachable C s; s-a--C-> t; (s,s'):R|] ==>\ -\ let T' = @t'. ? ex1. (t,t'):R & move A ex1 s' a t' in \ -\ Finite (@x. move A x s' a T')"; -by (cut_inst_tac [] move_is_move_sim 1); -by (REPEAT (assume_tac 1)); -by (asm_full_simp_tac (simpset() addsimps [move_def,Let_def]) 1); -qed"move_subprop2_sim"; - -Goal - "[|is_simulation R C A; reachable C s; s-a--C-> t; (s,s'):R|] ==>\ -\ let T' = @t'. ? ex1. (t,t'):R & move A ex1 s' a t' in \ -\ laststate (s',@x. move A x s' a T') = T'"; -by (cut_inst_tac [] move_is_move_sim 1); -by (REPEAT (assume_tac 1)); -by (asm_full_simp_tac (simpset() addsimps [move_def,Let_def]) 1); -qed"move_subprop3_sim"; - -Goal - "[|is_simulation R C A; reachable C s; s-a--C-> t; (s,s'):R|] ==>\ -\ let T' = @t'. ? ex1. (t,t'):R & move A ex1 s' a t' in \ -\ mk_trace A$((@x. move A x s' a T')) = \ -\ (if a:ext A then a>>nil else nil)"; -by (cut_inst_tac [] move_is_move_sim 1); -by (REPEAT (assume_tac 1)); -by (asm_full_simp_tac (simpset() addsimps [move_def,Let_def]) 1); -qed"move_subprop4_sim"; - -Goal - "[|is_simulation R C A; reachable C s; s-a--C-> t; (s,s'):R|] ==>\ -\ let T' = @t'. ? ex1. (t,t'):R & move A ex1 s' a t' in \ -\ (t,T'):R"; -by (cut_inst_tac [] move_is_move_sim 1); -by (REPEAT (assume_tac 1)); -by (asm_full_simp_tac (simpset() addsimps [move_def,Let_def]) 1); -qed"move_subprop5_sim"; - -(* ------------------------------------------------------------------ *) -(* The following lemmata contribute to *) -(* TRACE INCLUSION Part 1: Traces coincide *) -(* ------------------------------------------------------------------ *) - -section "Lemmata for <=="; - - -(* ------------------------------------------------------ - Lemma 1 :Traces coincide - ------------------------------------------------------- *) - -Delsplits[split_if]; -Goal - "[|is_simulation R C A; ext C = ext A|] ==> \ -\ !s s'. reachable C s & is_exec_frag C (s,ex) & (s,s'): R --> \ -\ mk_trace C$ex = mk_trace A$((corresp_ex_simC A R$ex) s')"; - -by (pair_induct_tac "ex" [is_exec_frag_def] 1); -(* cons case *) -by (safe_tac set_cs); -by (rename_tac "ex a t s s'" 1); -by (asm_full_simp_tac (simpset() addsimps [mk_traceConc]) 1); -by (forward_tac [reachable.reachable_n] 1); -by (assume_tac 1); -by (eres_inst_tac [("x","t")] allE 1); -by (eres_inst_tac [("x", - "@t'. ? ex1. (t,t'):R & move A ex1 s' a t'")] - allE 1); -by (Asm_full_simp_tac 1); -by (asm_full_simp_tac (simpset() addsimps - [rewrite_rule [Let_def] move_subprop5_sim, - rewrite_rule [Let_def] move_subprop4_sim] - addsplits [split_if]) 1); -qed_spec_mp"traces_coincide_sim"; -Addsplits[split_if]; - - -(* ----------------------------------------------------------- *) -(* Lemma 2 : corresp_ex_sim is execution *) -(* ----------------------------------------------------------- *) - - -Goal - "[| is_simulation R C A |] ==>\ -\ !s s'. reachable C s & is_exec_frag C (s,ex) & (s,s'):R \ -\ --> is_exec_frag A (s',(corresp_ex_simC A R$ex) s')"; - -by (Asm_full_simp_tac 1); -by (pair_induct_tac "ex" [is_exec_frag_def] 1); -(* main case *) -by (safe_tac set_cs); -by (rename_tac "ex a t s s'" 1); -by (res_inst_tac [("t", - "@t'. ? ex1. (t,t'):R & move A ex1 s' a t'")] - lemma_2_1 1); - -(* Finite *) -by (etac (rewrite_rule [Let_def] move_subprop2_sim) 1); -by (REPEAT (atac 1)); -by (rtac conjI 1); - -(* is_exec_frag *) -by (etac (rewrite_rule [Let_def] move_subprop1_sim) 1); -by (REPEAT (atac 1)); -by (rtac conjI 1); - -(* Induction hypothesis *) -(* reachable_n looping, therefore apply it manually *) -by (eres_inst_tac [("x","t")] allE 1); -by (eres_inst_tac [("x", - "@t'. ? ex1. (t,t'):R & move A ex1 s' a t'")] - allE 1); -by (Asm_full_simp_tac 1); -by (forward_tac [reachable.reachable_n] 1); -by (assume_tac 1); -by (asm_full_simp_tac (simpset() addsimps - [rewrite_rule [Let_def] move_subprop5_sim]) 1); -(* laststate *) -by (etac ((rewrite_rule [Let_def] move_subprop3_sim) RS sym) 1); -by (REPEAT (atac 1)); -qed_spec_mp"correspsim_is_execution"; - - -(* -------------------------------------------------------------------------------- *) - -section "Main Theorem: T R A C E - I N C L U S I O N"; - -(* -------------------------------------------------------------------------------- *) - - (* generate condition (s,S'):R & S':starts_of A, the first being intereting - for the induction cases concerning the two lemmas correpsim_is_execution and - traces_coincide_sim, the second for the start state case. - S':= @s'. (s,s'):R & s':starts_of A, where s:starts_of C *) - -Goal -"[| is_simulation R C A; s:starts_of C |] \ -\ ==> let S' = @s'. (s,s'):R & s':starts_of A in \ -\ (s,S'):R & S':starts_of A"; - by (asm_full_simp_tac (simpset() addsimps [is_simulation_def, - corresp_ex_sim_def, Int_non_empty,Image_def]) 1); - by (REPEAT (etac conjE 1)); - by (etac ballE 1); - by (Blast_tac 2); - by (etac exE 1); - by (rtac someI2 1); - by (assume_tac 1); - by (Blast_tac 1); -qed"simulation_starts"; - -bind_thm("sim_starts1",(rewrite_rule [Let_def] simulation_starts) RS conjunct1); -bind_thm("sim_starts2",(rewrite_rule [Let_def] simulation_starts) RS conjunct2); - - -Goalw [traces_def] - "[| ext C = ext A; is_simulation R C A |] \ -\ ==> traces C <= traces A"; - - by (simp_tac(simpset() addsimps [has_trace_def2])1); - by (safe_tac set_cs); - - (* give execution of abstract automata *) - by (res_inst_tac[("x","corresp_ex_sim A R ex")] bexI 1); - - (* Traces coincide, Lemma 1 *) - by (pair_tac "ex" 1); - by (rename_tac "s ex" 1); - by (simp_tac (simpset() addsimps [corresp_ex_sim_def]) 1); - by (res_inst_tac [("s","s")] traces_coincide_sim 1); - by (REPEAT (atac 1)); - by (asm_full_simp_tac (simpset() addsimps [executions_def, - reachable.reachable_0,sim_starts1]) 1); - - (* corresp_ex_sim is execution, Lemma 2 *) - by (pair_tac "ex" 1); - by (asm_full_simp_tac (simpset() addsimps [executions_def]) 1); - by (rename_tac "s ex" 1); - - (* start state *) - by (rtac conjI 1); - by (asm_full_simp_tac (simpset() addsimps [sim_starts2, - corresp_ex_sim_def]) 1); - - (* is-execution-fragment *) - by (asm_full_simp_tac (simpset() addsimps [corresp_ex_sim_def]) 1); - by (res_inst_tac [("s","s")] correspsim_is_execution 1); - by (assume_tac 1); - by (asm_full_simp_tac (simpset() addsimps [reachable.reachable_0,sim_starts1]) 1); -qed"trace_inclusion_for_simulations";