diff -r 6df83a636e67 -r f763367e332f src/HOL/Hyperreal/Lim.thy --- a/src/HOL/Hyperreal/Lim.thy Sun Sep 24 05:49:50 2006 +0200 +++ b/src/HOL/Hyperreal/Lim.thy Sun Sep 24 06:54:39 2006 +0200 @@ -1272,7 +1272,9 @@ apply auto done -lemma f_inc_imp_le_lim: "[| \n. f n \ f (Suc n); convergent f |] ==> f n \ lim f" +lemma f_inc_imp_le_lim: + fixes f :: "nat \ real" + shows "\\n. f n \ f (Suc n); convergent f\ \ f n \ lim f" apply (rule linorder_not_less [THEN iffD1]) apply (auto simp add: convergent_LIMSEQ_iff LIMSEQ_iff monoseq_Suc) apply (drule real_less_sum_gt_zero) @@ -1291,7 +1293,9 @@ apply (simp add: convergent_LIMSEQ_iff) done -lemma g_dec_imp_lim_le: "[| \n. g(Suc n) \ g(n); convergent g |] ==> lim g \ g n" +lemma g_dec_imp_lim_le: + fixes g :: "nat \ real" + shows "\\n. g (Suc n) \ g(n); convergent g\ \ lim g \ g n" apply (subgoal_tac "- (g n) \ - (lim g) ") apply (cut_tac [2] f = "%x. - (g x)" in f_inc_imp_le_lim) apply (auto simp add: lim_uminus convergent_minus_iff [symmetric])