diff -r c939cc16b605 -r f76b6dda2e56 src/HOL/Library/Multiset.thy --- a/src/HOL/Library/Multiset.thy Mon Oct 17 14:37:32 2016 +0200 +++ b/src/HOL/Library/Multiset.thy Mon Oct 17 17:33:07 2016 +0200 @@ -2269,13 +2269,13 @@ "prod_mset (replicate_mset n a) = a ^ n" by (induct n) simp_all -lemma setprod_unfold_prod_mset: - "setprod f A = prod_mset (image_mset f (mset_set A))" +lemma prod_unfold_prod_mset: + "prod f A = prod_mset (image_mset f (mset_set A))" by (cases "finite A") (induct A rule: finite_induct, simp_all) lemma prod_mset_multiplicity: - "prod_mset M = setprod (\x. x ^ count M x) (set_mset M)" - by (simp add: fold_mset_def setprod.eq_fold prod_mset.eq_fold funpow_times_power comp_def) + "prod_mset M = prod (\x. x ^ count M x) (set_mset M)" + by (simp add: fold_mset_def prod.eq_fold prod_mset.eq_fold funpow_times_power comp_def) lemma prod_mset_delta: "prod_mset (image_mset (\x. if x = y then c else 1) A) = c ^ count A y" by (induction A) simp_all