diff -r 4355a2afa7a3 -r f7e08143eea2 src/HOL/Relation.thy --- a/src/HOL/Relation.thy Fri Mar 14 18:02:16 2025 +0100 +++ b/src/HOL/Relation.thy Fri Mar 14 18:04:14 2025 +0100 @@ -239,7 +239,7 @@ lemma reflp_on_Sup: "\x\S. reflp_on (A x) (R x) \ reflp_on (\(A ` S)) (\(R ` S))" by (auto intro: reflp_onI dest: reflp_onD) -lemma refl_on_empty [simp]: "refl_on {} {}" +lemma refl_on_empty [simp]: "refl_on {} r" by (simp add: refl_on_def) lemma reflp_on_empty [simp]: "reflp_on {} R"