diff -r 4069afca81fd -r f831b6e589dc src/HOL/Library/Extended_Nonnegative_Real.thy --- a/src/HOL/Library/Extended_Nonnegative_Real.thy Sat Oct 30 13:26:33 2021 +0200 +++ b/src/HOL/Library/Extended_Nonnegative_Real.thy Sat Oct 30 17:10:10 2021 +0200 @@ -1175,14 +1175,15 @@ (* Contributed by Dominique Unruh *) lemma ennreal_of_enat_plus[simp]: \ennreal_of_enat (a+b) = ennreal_of_enat a + ennreal_of_enat b\ - apply (induction a) - apply auto - by (smt (z3) add.commute add.right_neutral enat.exhaust enat.simps(4) enat.simps(5) ennreal_add_left_cancel ennreal_of_enat_def infinity_ennreal_def of_nat_add of_nat_eq_enat plus_enat_simps(2)) + apply (induct a) + apply (metis enat.exhaust ennreal_add_eq_top ennreal_of_enat_enat ennreal_of_enat_infty infinity_ennreal_def of_nat_add plus_enat_simps(1) plus_eq_infty_iff_enat) + apply simp + done (* Contributed by Dominique Unruh *) lemma sum_ennreal_of_enat[simp]: "(\i\I. ennreal_of_enat (f i)) = ennreal_of_enat (sum f I)" - apply (induction I rule: infinite_finite_induct) - by (auto simp: sum_nonneg) + by (induct I rule: infinite_finite_induct) (auto simp: sum_nonneg) + subsection \Topology on \<^typ>\ennreal\\