diff -r a5f53d9d2b60 -r f8537d69f514 doc-src/TutorialI/CTL/document/PDL.tex --- a/doc-src/TutorialI/CTL/document/PDL.tex Thu May 29 13:27:13 2008 +0200 +++ b/doc-src/TutorialI/CTL/document/PDL.tex Thu May 29 22:45:33 2008 +0200 @@ -40,25 +40,18 @@ \noindent This resembles the boolean expression case study in \S\ref{sec:boolex}. -A validity relation between -states and formulae specifies the semantics:% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{consts}\isamarkupfalse% -\ valid\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}state\ {\isasymRightarrow}\ formula\ {\isasymRightarrow}\ bool{\isachardoublequoteclose}\ \ \ {\isacharparenleft}{\isachardoublequoteopen}{\isacharparenleft}{\isacharunderscore}\ {\isasymTurnstile}\ {\isacharunderscore}{\isacharparenright}{\isachardoublequoteclose}\ {\isacharbrackleft}{\isadigit{8}}{\isadigit{0}}{\isacharcomma}{\isadigit{8}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{8}}{\isadigit{0}}{\isacharparenright}% -\begin{isamarkuptext}% -\noindent +A validity relation between states and formulae specifies the semantics. The syntax annotation allows us to write \isa{s\ {\isasymTurnstile}\ f} instead of -\hbox{\isa{valid\ s\ f}}. -The definition of \isa{{\isasymTurnstile}} is by recursion over the syntax:% +\hbox{\isa{valid\ s\ f}}. The definition is by recursion over the syntax:% \end{isamarkuptext}% \isamarkuptrue% \isacommand{primrec}\isamarkupfalse% -\isanewline -{\isachardoublequoteopen}s\ {\isasymTurnstile}\ Atom\ a\ \ {\isacharequal}\ {\isacharparenleft}a\ {\isasymin}\ L\ s{\isacharparenright}{\isachardoublequoteclose}\isanewline -{\isachardoublequoteopen}s\ {\isasymTurnstile}\ Neg\ f\ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymnot}{\isacharparenleft}s\ {\isasymTurnstile}\ f{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}\isanewline -{\isachardoublequoteopen}s\ {\isasymTurnstile}\ And\ f\ g\ {\isacharequal}\ {\isacharparenleft}s\ {\isasymTurnstile}\ f\ {\isasymand}\ s\ {\isasymTurnstile}\ g{\isacharparenright}{\isachardoublequoteclose}\isanewline -{\isachardoublequoteopen}s\ {\isasymTurnstile}\ AX\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ {\isasymlongrightarrow}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequoteclose}\isanewline +\ valid\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}state\ {\isasymRightarrow}\ formula\ {\isasymRightarrow}\ bool{\isachardoublequoteclose}\ \ \ {\isacharparenleft}{\isachardoublequoteopen}{\isacharparenleft}{\isacharunderscore}\ {\isasymTurnstile}\ {\isacharunderscore}{\isacharparenright}{\isachardoublequoteclose}\ {\isacharbrackleft}{\isadigit{8}}{\isadigit{0}}{\isacharcomma}{\isadigit{8}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{8}}{\isadigit{0}}{\isacharparenright}\isanewline +\isakeyword{where}\isanewline +{\isachardoublequoteopen}s\ {\isasymTurnstile}\ Atom\ a\ \ {\isacharequal}\ {\isacharparenleft}a\ {\isasymin}\ L\ s{\isacharparenright}{\isachardoublequoteclose}\ {\isacharbar}\isanewline +{\isachardoublequoteopen}s\ {\isasymTurnstile}\ Neg\ f\ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymnot}{\isacharparenleft}s\ {\isasymTurnstile}\ f{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}\ {\isacharbar}\isanewline +{\isachardoublequoteopen}s\ {\isasymTurnstile}\ And\ f\ g\ {\isacharequal}\ {\isacharparenleft}s\ {\isasymTurnstile}\ f\ {\isasymand}\ s\ {\isasymTurnstile}\ g{\isacharparenright}{\isachardoublequoteclose}\ {\isacharbar}\isanewline +{\isachardoublequoteopen}s\ {\isasymTurnstile}\ AX\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ {\isasymlongrightarrow}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequoteclose}\ {\isacharbar}\isanewline {\isachardoublequoteopen}s\ {\isasymTurnstile}\ EF\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequoteclose}% \begin{isamarkuptext}% \noindent @@ -68,18 +61,17 @@ true. The future is expressed via \isa{\isactrlsup {\isacharasterisk}}, the reflexive transitive closure. Because of reflexivity, the future includes the present. -Now we come to the model checker itself. It maps a formula into the set of -states where the formula is true. It too is defined by recursion over the syntax:% +Now we come to the model checker itself. It maps a formula into the +set of states where the formula is true. It too is defined by +recursion over the syntax:% \end{isamarkuptext}% \isamarkuptrue% -\isacommand{consts}\isamarkupfalse% -\ mc\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}formula\ {\isasymRightarrow}\ state\ set{\isachardoublequoteclose}\isanewline \isacommand{primrec}\isamarkupfalse% -\isanewline -{\isachardoublequoteopen}mc{\isacharparenleft}Atom\ a{\isacharparenright}\ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ a\ {\isasymin}\ L\ s{\isacharbraceright}{\isachardoublequoteclose}\isanewline -{\isachardoublequoteopen}mc{\isacharparenleft}Neg\ f{\isacharparenright}\ \ \ {\isacharequal}\ {\isacharminus}mc\ f{\isachardoublequoteclose}\isanewline -{\isachardoublequoteopen}mc{\isacharparenleft}And\ f\ g{\isacharparenright}\ {\isacharequal}\ mc\ f\ {\isasyminter}\ mc\ g{\isachardoublequoteclose}\isanewline -{\isachardoublequoteopen}mc{\isacharparenleft}AX\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ \ {\isasymlongrightarrow}\ t\ {\isasymin}\ mc\ f{\isacharbraceright}{\isachardoublequoteclose}\isanewline +\ mc\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}formula\ {\isasymRightarrow}\ state\ set{\isachardoublequoteclose}\ \isakeyword{where}\isanewline +{\isachardoublequoteopen}mc{\isacharparenleft}Atom\ a{\isacharparenright}\ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ a\ {\isasymin}\ L\ s{\isacharbraceright}{\isachardoublequoteclose}\ {\isacharbar}\isanewline +{\isachardoublequoteopen}mc{\isacharparenleft}Neg\ f{\isacharparenright}\ \ \ {\isacharequal}\ {\isacharminus}mc\ f{\isachardoublequoteclose}\ {\isacharbar}\isanewline +{\isachardoublequoteopen}mc{\isacharparenleft}And\ f\ g{\isacharparenright}\ {\isacharequal}\ mc\ f\ {\isasyminter}\ mc\ g{\isachardoublequoteclose}\ {\isacharbar}\isanewline +{\isachardoublequoteopen}mc{\isacharparenleft}AX\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ \ {\isasymlongrightarrow}\ t\ {\isasymin}\ mc\ f{\isacharbraceright}{\isachardoublequoteclose}\ {\isacharbar}\isanewline {\isachardoublequoteopen}mc{\isacharparenleft}EF\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}% \begin{isamarkuptext}% \noindent