diff -r 70d4d9e5707b -r f8652d0534fa src/HOL/Quotient_Examples/Int_Pow.thy --- a/src/HOL/Quotient_Examples/Int_Pow.thy Fri Jul 22 08:02:37 2016 +0200 +++ b/src/HOL/Quotient_Examples/Int_Pow.thy Fri Jul 22 11:00:43 2016 +0200 @@ -41,8 +41,8 @@ "[| x \ Units G; y \ Units G |] ==> inv (x \ y) = inv y \ inv x" proof - assume G: "x \ Units G" "y \ Units G" - moreover then have "x \ carrier G" "y \ carrier G" by auto - ultimately have "inv (x \ y) \ (x \ y) = (inv y \ inv x) \ (x \ y)" + then have "x \ carrier G" "y \ carrier G" by auto + with G have "inv (x \ y) \ (x \ y) = (inv y \ inv x) \ (x \ y)" by (simp add: m_assoc) (simp add: m_assoc [symmetric]) with G show ?thesis by (simp del: Units_l_inv) qed