diff -r 9722171731af -r f88b187ad8ca src/HOL/Algebra/Coset.thy --- a/src/HOL/Algebra/Coset.thy Mon Feb 27 20:55:30 2012 +0100 +++ b/src/HOL/Algebra/Coset.thy Mon Feb 27 21:07:00 2012 +0100 @@ -232,7 +232,7 @@ also from carr have "\ = x' \ ((inv x) \ x)" by (simp add: m_assoc) also from carr - have "\ = x' \ \" by (simp add: l_inv) + have "\ = x' \ \" by simp also from carr have "\ = x'" by simp finally @@ -520,8 +520,7 @@ apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def image_def) apply (rule_tac x = x in bexI) apply (rule bexI [of _ "\"]) -apply (auto simp add: subgroup.m_closed subgroup.one_closed - r_one subgroup.subset [THEN subsetD]) +apply (auto simp add: subgroup.one_closed subgroup.subset [THEN subsetD]) done @@ -612,7 +611,7 @@ fix x y assume [simp]: "x \ carrier G" "y \ carrier G" and "inv x \ y \ H" - hence "inv (inv x \ y) \ H" by (simp add: m_inv_closed) + hence "inv (inv x \ y) \ H" by simp thus "inv y \ x \ H" by (simp add: inv_mult_group) qed next @@ -722,7 +721,7 @@ assume abrcong: "(a, b) \ rcong H" and ccarr: "c \ carrier G" - from ccarr have "c \ Units G" by (simp add: Units_eq) + from ccarr have "c \ Units G" by simp hence cinvc_one: "inv c \ c = \" by (rule Units_l_inv) from abrcong