diff -r b640770117fd -r f8a513fedb31 src/HOL/Library/Multiset.thy --- a/src/HOL/Library/Multiset.thy Mon Jun 08 22:04:19 2015 +0200 +++ b/src/HOL/Library/Multiset.thy Wed Jun 10 13:24:16 2015 +0200 @@ -280,157 +280,137 @@ subsubsection {* Pointwise ordering induced by count *} -instantiation multiset :: (type) ordered_ab_semigroup_add_imp_le -begin - -lift_definition less_eq_multiset :: "'a multiset \ 'a multiset \ bool" is "\ A B. (\a. A a \ B a)" . - -lemmas mset_le_def = less_eq_multiset_def - -definition less_multiset :: "'a multiset \ 'a multiset \ bool" where - mset_less_def: "(A::'a multiset) < B \ A \ B \ A \ B" - -instance - by default (auto simp add: mset_le_def mset_less_def multiset_eq_iff intro: order_trans antisym) - -end - -abbreviation less_mset :: "'a multiset \ 'a multiset \ bool" (infix "<#" 50) where - "A <# B \ A < B" -abbreviation (xsymbols) subset_mset :: "'a multiset \ 'a multiset \ bool" (infix "\#" 50) where - "A \# B \ A < B" - -abbreviation less_eq_mset :: "'a multiset \ 'a multiset \ bool" (infix "<=#" 50) where - "A <=# B \ A \ B" -abbreviation (xsymbols) leq_mset :: "'a multiset \ 'a multiset \ bool" (infix "\#" 50) where - "A \# B \ A \ B" -abbreviation (xsymbols) subseteq_mset :: "'a multiset \ 'a multiset \ bool" (infix "\#" 50) where - "A \# B \ A \ B" +definition subseteq_mset :: "'a multiset \ 'a multiset \ bool" (infix "<=#" 50) where +"subseteq_mset A B \ (\a. count A a \ count B a)" + +definition subset_mset :: "'a multiset \ 'a multiset \ bool" (infix "<#" 50) where +"subset_mset A B \ (A <=# B \ A \ B)" + +notation subseteq_mset (infix "\#" 50) +notation (xsymbols) subseteq_mset (infix "\#" 50) + +notation (xsymbols) subset_mset (infix "\#" 50) + +interpretation subset_mset: ordered_ab_semigroup_add_imp_le "op +" "op -" "op <=#" "op <#" + by default (auto simp add: subset_mset_def subseteq_mset_def multiset_eq_iff intro: order_trans antisym) lemma mset_less_eqI: - "(\x. count A x \ count B x) \ A \ B" - by (simp add: mset_le_def) + "(\x. count A x \ count B x) \ A \# B" + by (simp add: subseteq_mset_def) lemma mset_le_exists_conv: - "(A::'a multiset) \ B \ (\C. B = A + C)" -apply (unfold mset_le_def, rule iffI, rule_tac x = "B - A" in exI) + "(A::'a multiset) \# B \ (\C. B = A + C)" +apply (unfold subseteq_mset_def, rule iffI, rule_tac x = "B - A" in exI) apply (auto intro: multiset_eq_iff [THEN iffD2]) done -instance multiset :: (type) ordered_cancel_comm_monoid_diff +interpretation subset_mset: ordered_cancel_comm_monoid_diff "op +" "op -" 0 "op \#" "op <#" by default (simp, fact mset_le_exists_conv) lemma mset_le_mono_add_right_cancel [simp]: - "(A::'a multiset) + C \ B + C \ A \ B" - by (fact add_le_cancel_right) + "(A::'a multiset) + C \# B + C \ A \# B" + by (fact subset_mset.add_le_cancel_right) lemma mset_le_mono_add_left_cancel [simp]: - "C + (A::'a multiset) \ C + B \ A \ B" - by (fact add_le_cancel_left) + "C + (A::'a multiset) \# C + B \ A \# B" + by (fact subset_mset.add_le_cancel_left) lemma mset_le_mono_add: - "(A::'a multiset) \ B \ C \ D \ A + C \ B + D" - by (fact add_mono) + "(A::'a multiset) \# B \ C \# D \ A + C \# B + D" + by (fact subset_mset.add_mono) lemma mset_le_add_left [simp]: - "(A::'a multiset) \ A + B" - unfolding mset_le_def by auto + "(A::'a multiset) \# A + B" + unfolding subseteq_mset_def by auto lemma mset_le_add_right [simp]: - "B \ (A::'a multiset) + B" - unfolding mset_le_def by auto + "B \# (A::'a multiset) + B" + unfolding subseteq_mset_def by auto lemma mset_le_single: - "a :# B \ {#a#} \ B" - by (simp add: mset_le_def) + "a :# B \ {#a#} \# B" + by (simp add: subseteq_mset_def) lemma multiset_diff_union_assoc: - "C \ B \ (A::'a multiset) + B - C = A + (B - C)" - by (simp add: multiset_eq_iff mset_le_def) + "C \# B \ (A::'a multiset) + B - C = A + (B - C)" + by (simp add: subset_mset.diff_add_assoc) lemma mset_le_multiset_union_diff_commute: - "B \ A \ (A::'a multiset) - B + C = A + C - B" -by (simp add: multiset_eq_iff mset_le_def) - -lemma diff_le_self[simp]: "(M::'a multiset) - N \ M" -by(simp add: mset_le_def) - -lemma mset_lessD: "A < B \ x \# A \ x \# B" -apply (clarsimp simp: mset_le_def mset_less_def) + "B \# A \ (A::'a multiset) - B + C = A + C - B" +by (simp add: subset_mset.add_diff_assoc2) + +lemma diff_le_self[simp]: "(M::'a multiset) - N \# M" +by(simp add: subseteq_mset_def) + +lemma mset_lessD: "A <# B \ x \# A \ x \# B" +apply (clarsimp simp: subset_mset_def subseteq_mset_def) apply (erule_tac x=x in allE) apply auto done -lemma mset_leD: "A \ B \ x \# A \ x \# B" -apply (clarsimp simp: mset_le_def mset_less_def) +lemma mset_leD: "A \# B \ x \# A \ x \# B" +apply (clarsimp simp: subset_mset_def subseteq_mset_def) apply (erule_tac x = x in allE) apply auto done -lemma mset_less_insertD: "(A + {#x#} < B) \ (x \# B \ A < B)" +lemma mset_less_insertD: "(A + {#x#} <# B) \ (x \# B \ A <# B)" apply (rule conjI) apply (simp add: mset_lessD) -apply (clarsimp simp: mset_le_def mset_less_def) +apply (clarsimp simp: subset_mset_def subseteq_mset_def) apply safe apply (erule_tac x = a in allE) apply (auto split: split_if_asm) done -lemma mset_le_insertD: "(A + {#x#} \ B) \ (x \# B \ A \ B)" +lemma mset_le_insertD: "(A + {#x#} \# B) \ (x \# B \ A \# B)" apply (rule conjI) apply (simp add: mset_leD) -apply (force simp: mset_le_def mset_less_def split: split_if_asm) +apply (force simp: subset_mset_def subseteq_mset_def split: split_if_asm) done -lemma mset_less_of_empty[simp]: "A < {#} \ False" - by (auto simp add: mset_less_def mset_le_def multiset_eq_iff) - -lemma empty_le[simp]: "{#} \ A" +lemma mset_less_of_empty[simp]: "A <# {#} \ False" + by (auto simp add: subseteq_mset_def subset_mset_def multiset_eq_iff) + +lemma empty_le[simp]: "{#} \# A" unfolding mset_le_exists_conv by auto -lemma le_empty[simp]: "(M \ {#}) = (M = {#})" +lemma le_empty[simp]: "(M \# {#}) = (M = {#})" unfolding mset_le_exists_conv by auto -lemma multi_psub_of_add_self[simp]: "A < A + {#x#}" - by (auto simp: mset_le_def mset_less_def) - -lemma multi_psub_self[simp]: "(A::'a multiset) < A = False" +lemma multi_psub_of_add_self[simp]: "A <# A + {#x#}" + by (auto simp: subset_mset_def subseteq_mset_def) + +lemma multi_psub_self[simp]: "(A::'a multiset) <# A = False" by simp -lemma mset_less_add_bothsides: "N + {#x#} < M + {#x#} \ N < M" - by (fact add_less_imp_less_right) +lemma mset_less_add_bothsides: "N + {#x#} <# M + {#x#} \ N <# M" + by (fact subset_mset.add_less_imp_less_right) lemma mset_less_empty_nonempty: - "{#} < S \ S \ {#}" - by (auto simp: mset_le_def mset_less_def) + "{#} <# S \ S \ {#}" + by (auto simp: subset_mset_def subseteq_mset_def) lemma mset_less_diff_self: - "c \# B \ B - {#c#} < B" - by (auto simp: mset_le_def mset_less_def multiset_eq_iff) + "c \# B \ B - {#c#} <# B" + by (auto simp: subset_mset_def subseteq_mset_def multiset_eq_iff) subsubsection {* Intersection *} -instantiation multiset :: (type) semilattice_inf -begin - -definition inf_multiset :: "'a multiset \ 'a multiset \ 'a multiset" where - multiset_inter_def: "inf_multiset A B = A - (A - B)" - -instance +definition inf_subset_mset :: "'a multiset \ 'a multiset \ 'a multiset" (infixl "#\" 70) where + multiset_inter_def: "inf_subset_mset A B = A - (A - B)" + +interpretation subset_mset: semilattice_inf inf_subset_mset "op \#" "op <#" proof - - have aux: "\m n q :: nat. m \ n \ m \ q \ m \ n - (n - q)" by arith - show "OFCLASS('a multiset, semilattice_inf_class)" - by default (auto simp add: multiset_inter_def mset_le_def aux) + have aux: "\m n q :: nat. m \ n \ m \ q \ m \ n - (n - q)" by arith + show "class.semilattice_inf op #\ op \# op <#" + by default (auto simp add: multiset_inter_def subseteq_mset_def aux) qed -end - -abbreviation multiset_inter :: "'a multiset \ 'a multiset \ 'a multiset" (infixl "#\" 70) where - "multiset_inter \ inf" lemma multiset_inter_count [simp]: - "count (A #\ B) x = min (count A x) (count B x)" + "count ((A::'a multiset) #\ B) x = min (count A x) (count B x)" by (simp add: multiset_inter_def) lemma multiset_inter_single: "a \ b \ {#a#} #\ {#b#} = {#}" @@ -475,28 +455,19 @@ subsubsection {* Bounded union *} - -instantiation multiset :: (type) semilattice_sup -begin - -definition sup_multiset :: "'a multiset \ 'a multiset \ 'a multiset" where - "sup_multiset A B = A + (B - A)" - -instance +definition sup_subset_mset :: "'a multiset \ 'a multiset \ 'a multiset"(infixl "#\" 70) where + "sup_subset_mset A B = A + (B - A)" + +interpretation subset_mset: semilattice_sup sup_subset_mset "op \#" "op <#" proof - have aux: "\m n q :: nat. m \ n \ q \ n \ m + (q - m) \ n" by arith - show "OFCLASS('a multiset, semilattice_sup_class)" - by default (auto simp add: sup_multiset_def mset_le_def aux) + show "class.semilattice_sup op #\ op \# op <#" + by default (auto simp add: sup_subset_mset_def subseteq_mset_def aux) qed -end - -abbreviation sup_multiset :: "'a multiset \ 'a multiset \ 'a multiset" (infixl "#\" 70) where - "sup_multiset \ sup" - -lemma sup_multiset_count [simp]: +lemma sup_subset_mset_count [simp]: "count (A #\ B) x = max (count A x) (count B x)" - by (simp add: sup_multiset_def) + by (simp add: sup_subset_mset_def) lemma empty_sup [simp]: "{#} #\ M = M" @@ -522,6 +493,8 @@ "x \# N \ N #\ (M + {#x#}) = ((N - {#x#}) #\ M) + {#x#}" by (simp add: multiset_eq_iff) +subsubsection {*Subset is an order*} +interpretation subset_mset: order "op \#" "op <#" by unfold_locales auto subsubsection {* Filter (with comprehension syntax) *} @@ -555,11 +528,11 @@ "filter_mset P (M #\ N) = filter_mset P M #\ filter_mset P N" by (rule multiset_eqI) simp -lemma multiset_filter_subset[simp]: "filter_mset f M \ M" - unfolding less_eq_multiset.rep_eq by auto - -lemma multiset_filter_mono: assumes "A \ B" - shows "filter_mset f A \ filter_mset f B" +lemma multiset_filter_subset[simp]: "filter_mset f M \# M" + by (simp add: mset_less_eqI) + +lemma multiset_filter_mono: assumes "A \# B" + shows "filter_mset f A \# filter_mset f B" proof - from assms[unfolded mset_le_exists_conv] obtain C where B: "B = A + C" by auto @@ -603,7 +576,7 @@ lemma finite_Collect_mem [iff]: "finite {x. x :# M}" unfolding set_of_def[symmetric] by simp -lemma set_of_mono: "A \ B \ set_of A \ set_of B" +lemma set_of_mono: "A \# B \ set_of A \ set_of B" by (metis mset_leD subsetI mem_set_of_iff) lemma ball_set_of_iff: "(\x \ set_of M. P x) \ (\x. x \# M \ P x)" @@ -685,7 +658,7 @@ then show ?thesis by blast qed -lemma size_mset_mono: assumes "A \ B" +lemma size_mset_mono: assumes "A \# B" shows "size A \ size(B::_ multiset)" proof - from assms[unfolded mset_le_exists_conv] @@ -697,7 +670,7 @@ by (rule size_mset_mono[OF multiset_filter_subset]) lemma size_Diff_submset: - "M \ M' \ size (M' - M) = size M' - size(M::'a multiset)" + "M \# M' \ size (M' - M) = size M' - size(M::'a multiset)" by (metis add_diff_cancel_left' size_union mset_le_exists_conv) subsection {* Induction and case splits *} @@ -732,7 +705,7 @@ apply auto done -lemma mset_less_size: "(A::'a multiset) < B \ size A < size B" +lemma mset_less_size: "(A::'a multiset) <# B \ size A < size B" proof (induct A arbitrary: B) case (empty M) then have "M \ {#}" by (simp add: mset_less_empty_nonempty) @@ -741,12 +714,12 @@ then show ?case by simp next case (add S x T) - have IH: "\B. S < B \ size S < size B" by fact - have SxsubT: "S + {#x#} < T" by fact - then have "x \# T" and "S < T" by (auto dest: mset_less_insertD) + have IH: "\B. S <# B \ size S < size B" by fact + have SxsubT: "S + {#x#} <# T" by fact + then have "x \# T" and "S <# T" by (auto dest: mset_less_insertD) then obtain T' where T: "T = T' + {#x#}" by (blast dest: multi_member_split) - then have "S < T'" using SxsubT + then have "S <# T'" using SxsubT by (blast intro: mset_less_add_bothsides) then have "size S < size T'" using IH by simp then show ?case using T by simp @@ -760,35 +733,35 @@ text {* Well-foundedness of strict subset relation *} -lemma wf_less_mset_rel: "wf {(M, N :: 'a multiset). M < N}" +lemma wf_less_mset_rel: "wf {(M, N :: 'a multiset). M <# N}" apply (rule wf_measure [THEN wf_subset, where f1=size]) apply (clarsimp simp: measure_def inv_image_def mset_less_size) done lemma full_multiset_induct [case_names less]: -assumes ih: "\B. \(A::'a multiset). A < B \ P A \ P B" +assumes ih: "\B. \(A::'a multiset). A <# B \ P A \ P B" shows "P B" apply (rule wf_less_mset_rel [THEN wf_induct]) apply (rule ih, auto) done lemma multi_subset_induct [consumes 2, case_names empty add]: -assumes "F \ A" +assumes "F \# A" and empty: "P {#}" and insert: "\a F. a \# A \ P F \ P (F + {#a#})" shows "P F" proof - - from `F \ A` + from `F \# A` show ?thesis proof (induct F) show "P {#}" by fact next fix x F - assume P: "F \ A \ P F" and i: "F + {#x#} \ A" + assume P: "F \# A \ P F" and i: "F + {#x#} \# A" show "P (F + {#x#})" proof (rule insert) from i show "x \# A" by (auto dest: mset_le_insertD) - from i have "F \ A" by (auto dest: mset_le_insertD) + from i have "F \# A" by (auto dest: mset_le_insertD) with P show "P F" . qed qed @@ -1280,8 +1253,8 @@ lemma msetsum_diff: fixes M N :: "('a \ ordered_cancel_comm_monoid_diff) multiset" - shows "N \ M \ msetsum (M - N) = msetsum M - msetsum N" - by (metis add_diff_cancel_left' msetsum.union ordered_cancel_comm_monoid_diff_class.add_diff_inverse) + shows "N \# M \ msetsum (M - N) = msetsum M - msetsum N" + by (metis add_diff_cancel_right' msetsum.union subset_mset.diff_add) lemma size_eq_msetsum: "size M = msetsum (image_mset (\_. 1) M)" proof (induct M) @@ -1404,8 +1377,9 @@ lemma size_replicate_mset[simp]: "size (replicate_mset n M) = n" by (induct n, simp_all) -lemma count_le_replicate_mset_le: "n \ count M x \ replicate_mset n x \ M" - by (auto simp add: assms mset_less_eqI) (metis count_replicate_mset less_eq_multiset.rep_eq) +lemma count_le_replicate_mset_le: "n \ count M x \ replicate_mset n x \# M" + by (auto simp add: assms mset_less_eqI) (metis count_replicate_mset subseteq_mset_def) + lemma filter_eq_replicate_mset: "{#y \# D. y = x#} = replicate_mset (count D x) x" by (induct D) simp_all @@ -1555,8 +1529,8 @@ hide_const (open) part -lemma multiset_of_remdups_le: "multiset_of (remdups xs) \ multiset_of xs" - by (induct xs) (auto intro: order_trans) +lemma multiset_of_remdups_le: "multiset_of (remdups xs) \# multiset_of xs" + by (induct xs) (auto intro: subset_mset.order_trans) lemma multiset_of_update: "i < length ls \ multiset_of (ls[i := v]) = multiset_of ls - {#ls ! i#} + {#v#}" @@ -2037,17 +2011,17 @@ lemma multi_union_self_other_eq: "(A::'a multiset) + X = A + Y \ X = Y" by (fact add_left_imp_eq) -lemma mset_less_trans: "(M::'a multiset) < K \ K < N \ M < N" - by (fact order_less_trans) +lemma mset_less_trans: "(M::'a multiset) <# K \ K <# N \ M <# N" + by (fact subset_mset.less_trans) lemma multiset_inter_commute: "A #\ B = B #\ A" - by (fact inf.commute) + by (fact subset_mset.inf.commute) lemma multiset_inter_assoc: "A #\ (B #\ C) = A #\ B #\ C" - by (fact inf.assoc [symmetric]) + by (fact subset_mset.inf.assoc [symmetric]) lemma multiset_inter_left_commute: "A #\ (B #\ C) = B #\ (A #\ C)" - by (fact inf.left_commute) + by (fact subset_mset.inf.left_commute) lemmas multiset_inter_ac = multiset_inter_commute @@ -2182,8 +2156,8 @@ None \ None | Some (ys1,_,ys2) \ ms_lesseq_impl xs (ys1 @ ys2))" -lemma ms_lesseq_impl: "(ms_lesseq_impl xs ys = None \ \ multiset_of xs \ multiset_of ys) \ - (ms_lesseq_impl xs ys = Some True \ multiset_of xs < multiset_of ys) \ +lemma ms_lesseq_impl: "(ms_lesseq_impl xs ys = None \ \ multiset_of xs \# multiset_of ys) \ + (ms_lesseq_impl xs ys = Some True \ multiset_of xs <# multiset_of ys) \ (ms_lesseq_impl xs ys = Some False \ multiset_of xs = multiset_of ys)" proof (induct xs arbitrary: ys) case (Nil ys) @@ -2195,13 +2169,13 @@ case None hence x: "x \ set ys" by (simp add: extract_None_iff) { - assume "multiset_of (x # xs) \ multiset_of ys" + assume "multiset_of (x # xs) \# multiset_of ys" from set_of_mono[OF this] x have False by simp } note nle = this moreover { - assume "multiset_of (x # xs) < multiset_of ys" - hence "multiset_of (x # xs) \ multiset_of ys" by auto + assume "multiset_of (x # xs) <# multiset_of ys" + hence "multiset_of (x # xs) \# multiset_of ys" by auto from nle[OF this] have False . } ultimately show ?thesis using None by auto @@ -2216,14 +2190,14 @@ unfolding Some option.simps split unfolding id using Cons[of "ys1 @ ys2"] - unfolding mset_le_def mset_less_def by auto + unfolding subset_mset_def subseteq_mset_def by auto qed qed -lemma [code]: "multiset_of xs \ multiset_of ys \ ms_lesseq_impl xs ys \ None" +lemma [code]: "multiset_of xs \# multiset_of ys \ ms_lesseq_impl xs ys \ None" using ms_lesseq_impl[of xs ys] by (cases "ms_lesseq_impl xs ys", auto) -lemma [code]: "multiset_of xs < multiset_of ys \ ms_lesseq_impl xs ys = Some True" +lemma [code]: "multiset_of xs <# multiset_of ys \ ms_lesseq_impl xs ys = Some True" using ms_lesseq_impl[of xs ys] by (cases "ms_lesseq_impl xs ys", auto) instantiation multiset :: (equal) equal