diff -r 19efc2af3e6c -r f967a16dfcdd src/HOL/Library/Formal_Power_Series.thy --- a/src/HOL/Library/Formal_Power_Series.thy Mon Sep 06 22:58:06 2010 +0200 +++ b/src/HOL/Library/Formal_Power_Series.thy Tue Sep 07 10:05:19 2010 +0200 @@ -18,7 +18,7 @@ notation fps_nth (infixl "$" 75) lemma expand_fps_eq: "p = q \ (\n. p $ n = q $ n)" - by (simp add: fps_nth_inject [symmetric] expand_fun_eq) + by (simp add: fps_nth_inject [symmetric] ext_iff) lemma fps_ext: "(\n. p $ n = q $ n) \ p = q" by (simp add: expand_fps_eq) @@ -1244,7 +1244,7 @@ {assume n0: "n \ 0" then have u: "{0} \ ({1} \ {2..n}) = {0..n}" "{1}\{2..n} = {1..n}" "{0..n - 1}\{n} = {0..n}" - by (auto simp: expand_set_eq) + by (auto simp: set_ext_iff) have d: "{0} \ ({1} \ {2..n}) = {}" "{1} \ {2..n} = {}" "{0..n - 1}\{n} ={}" using n0 by simp_all have f: "finite {0}" "finite {1}" "finite {2 .. n}" @@ -1455,7 +1455,7 @@ moreover {fix k assume k: "m = Suc k" have km: "k < m" using k by arith - have u0: "{0 .. k} \ {m} = {0..m}" using k apply (simp add: expand_set_eq) by presburger + have u0: "{0 .. k} \ {m} = {0..m}" using k apply (simp add: set_ext_iff) by presburger have f0: "finite {0 .. k}" "finite {m}" by auto have d0: "{0 .. k} \ {m} = {}" using k by auto have "(setprod a {0 .. m}) $ n = (setprod a {0 .. k} * a m) $ n" @@ -1472,7 +1472,7 @@ apply clarsimp apply (rule finite_imageI) apply (rule natpermute_finite) - apply (clarsimp simp add: expand_set_eq) + apply (clarsimp simp add: set_ext_iff) apply auto apply (rule setsum_cong2) unfolding setsum_left_distrib @@ -2153,7 +2153,7 @@ qed lemma fps_inv_ginv: "fps_inv = fps_ginv X" - apply (auto simp add: expand_fun_eq fps_eq_iff fps_inv_def fps_ginv_def) + apply (auto simp add: ext_iff fps_eq_iff fps_inv_def fps_ginv_def) apply (induct_tac n rule: nat_less_induct, auto) apply (case_tac na) apply simp @@ -2192,7 +2192,7 @@ "setsum (%i. a (i :: nat) * b (n - i)) {0 .. n} = setsum (%(i,j). a i * b j) {(i,j). i <= n \ j \ n \ i + j = n}" apply (rule setsum_reindex_cong[where f=fst]) apply (clarsimp simp add: inj_on_def) - apply (auto simp add: expand_set_eq image_iff) + apply (auto simp add: set_ext_iff image_iff) apply (rule_tac x= "x" in exI) apply clarsimp apply (rule_tac x="n - x" in exI) @@ -2264,7 +2264,7 @@ let ?KM= "{(k,m). k + m \ n}" let ?f = "%s. UNION {(0::nat)..s} (%i. {(i,s - i)})" have th0: "?KM = UNION {0..n} ?f" - apply (simp add: expand_set_eq) + apply (simp add: set_ext_iff) apply arith (* FIXME: VERY slow! *) done show "?l = ?r " @@ -3312,10 +3312,10 @@ lemma XDp_commute: shows "XDp b o XDp (c::'a::comm_ring_1) = XDp c o XDp b" - by (auto simp add: XDp_def expand_fun_eq fps_eq_iff algebra_simps) + by (auto simp add: XDp_def ext_iff fps_eq_iff algebra_simps) lemma XDp0[simp]: "XDp 0 = XD" - by (simp add: expand_fun_eq fps_eq_iff) + by (simp add: ext_iff fps_eq_iff) lemma XDp_fps_integral[simp]:"XDp 0 (fps_integral a c) = X * a" by (simp add: fps_eq_iff fps_integral_def)