diff -r 19efc2af3e6c -r f967a16dfcdd src/HOL/Library/Set_Algebras.thy --- a/src/HOL/Library/Set_Algebras.thy Mon Sep 06 22:58:06 2010 +0200 +++ b/src/HOL/Library/Set_Algebras.thy Tue Sep 07 10:05:19 2010 +0200 @@ -72,7 +72,7 @@ show "monoid_add.listsum set_plus {0::'a} = listsum_set" by (simp only: listsum_set_def) show "comm_monoid_add.setsum set_plus {0::'a} = setsum_set" - by (simp add: set_add.setsum_def setsum_set_def expand_fun_eq) + by (simp add: set_add.setsum_def setsum_set_def ext_iff) qed interpretation set_mult!: semigroup "set_times :: 'a::semigroup_mult set \ 'a set \ 'a set" proof @@ -117,7 +117,7 @@ show "power.power {1} set_times = (\A n. power_set n A)" by (simp add: power_set_def) show "comm_monoid_mult.setprod set_times {1::'a} = setprod_set" - by (simp add: set_mult.setprod_def setprod_set_def expand_fun_eq) + by (simp add: set_mult.setprod_def setprod_set_def ext_iff) qed lemma set_plus_intro [intro]: "a : C ==> b : D ==> a + b : C \ D"