diff -r 19efc2af3e6c -r f967a16dfcdd src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Mon Sep 06 22:58:06 2010 +0200 +++ b/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Tue Sep 07 10:05:19 2010 +0200 @@ -1440,12 +1440,12 @@ lemma interval_cart: fixes a :: "'a::ord^'n" shows "{a <..< b} = {x::'a^'n. \i. a$i < x$i \ x$i < b$i}" and "{a .. b} = {x::'a^'n. \i. a$i \ x$i \ x$i \ b$i}" - by (auto simp add: expand_set_eq vector_less_def vector_le_def) + by (auto simp add: set_ext_iff vector_less_def vector_le_def) lemma mem_interval_cart: fixes a :: "'a::ord^'n" shows "x \ {a<.. (\i. a$i < x$i \ x$i < b$i)" "x \ {a .. b} \ (\i. a$i \ x$i \ x$i \ b$i)" - using interval_cart[of a b] by(auto simp add: expand_set_eq vector_less_def vector_le_def) + using interval_cart[of a b] by(auto simp add: set_ext_iff vector_less_def vector_le_def) lemma interval_eq_empty_cart: fixes a :: "real^'n" shows "({a <..< b} = {} \ (\i. b$i \ a$i))" (is ?th1) and @@ -1498,7 +1498,7 @@ lemma interval_sing: fixes a :: "'a::linorder^'n" shows "{a .. a} = {a} \ {a<.. x $ i" using x order_less_imp_le[of "a$i" "x$i"] - by(simp add: expand_set_eq vector_less_def vector_le_def Cart_eq) + by(simp add: set_ext_iff vector_less_def vector_le_def Cart_eq) } moreover { fix i have "x $ i \ b $ i" using x order_less_imp_le[of "x$i" "b$i"] - by(simp add: expand_set_eq vector_less_def vector_le_def Cart_eq) + by(simp add: set_ext_iff vector_less_def vector_le_def Cart_eq) } ultimately show "a \ x \ x \ b" - by(simp add: expand_set_eq vector_less_def vector_le_def Cart_eq) + by(simp add: set_ext_iff vector_less_def vector_le_def Cart_eq) qed lemma subset_interval_cart: fixes a :: "real^'n" shows @@ -1540,7 +1540,7 @@ lemma inter_interval_cart: fixes a :: "'a::linorder^'n" shows "{a .. b} \ {c .. d} = {(\ i. max (a$i) (c$i)) .. (\ i. min (b$i) (d$i))}" - unfolding expand_set_eq and Int_iff and mem_interval_cart + unfolding set_ext_iff and Int_iff and mem_interval_cart by auto lemma closed_interval_left_cart: fixes b::"real^'n" @@ -1656,7 +1656,7 @@ shows "(\x. m *s x + c) o (\x. inverse(m) *s x + (-(inverse(m) *s c))) = id" "(\x. inverse(m) *s x + (-(inverse(m) *s c))) o (\x. m *s x + c) = id" using m0 -apply (auto simp add: expand_fun_eq vector_add_ldistrib) +apply (auto simp add: ext_iff vector_add_ldistrib) by (simp_all add: vector_smult_lneg[symmetric] vector_smult_assoc vector_sneg_minus1[symmetric]) lemma vector_affinity_eq: @@ -2119,10 +2119,10 @@ lemma open_closed_interval_1: fixes a :: "real^1" shows "{a<.. dest_vec1 b ==> {a .. b} = {a<.. {a,b}" - unfolding expand_set_eq apply simp unfolding vector_less_def and vector_le_def and forall_1 and dest_vec1_eq[THEN sym] by(auto simp del:dest_vec1_eq) + unfolding set_ext_iff apply simp unfolding vector_less_def and vector_le_def and forall_1 and dest_vec1_eq[THEN sym] by(auto simp del:dest_vec1_eq) lemma Lim_drop_le: fixes f :: "'a \ real^1" shows "(f ---> l) net \ ~(trivial_limit net) \ eventually (\x. dest_vec1 (f x) \ b) net ==> dest_vec1 l \ b"