diff -r 19efc2af3e6c -r f967a16dfcdd src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Mon Sep 06 22:58:06 2010 +0200 +++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Tue Sep 07 10:05:19 2010 +0200 @@ -191,7 +191,7 @@ lemma affine_hull_finite: assumes "finite s" shows "affine hull s = {y. \u. setsum u s = 1 \ setsum (\v. u v *\<^sub>R v) s = y}" - unfolding affine_hull_explicit and expand_set_eq and mem_Collect_eq apply (rule,rule) + unfolding affine_hull_explicit and set_ext_iff and mem_Collect_eq apply (rule,rule) apply(erule exE)+ apply(erule conjE)+ defer apply(erule exE) apply(erule conjE) proof- fix x u assume "setsum u s = 1" "(\v\s. u v *\<^sub>R v) = x" thus "\sa u. finite sa \ \ (\x. (x \ sa) = (x \ {})) \ sa \ s \ setsum u sa = 1 \ (\v\sa. u v *\<^sub>R v) = x" @@ -709,7 +709,7 @@ ultimately have "\k u x. (\i\{1..k}. 0 \ u i \ x i \ p) \ setsum u {1..k} = 1 \ (\i::nat = 1..k. u i *\<^sub>R x i) = y" apply(rule_tac x="card s" in exI) apply(rule_tac x="u \ f" in exI) apply(rule_tac x=f in exI) by fastsimp hence "y \ ?lhs" unfolding convex_hull_indexed by auto } - ultimately show ?thesis unfolding expand_set_eq by blast + ultimately show ?thesis unfolding set_ext_iff by blast qed subsection {* A stepping theorem for that expansion. *} @@ -882,7 +882,7 @@ lemma convex_hull_caratheodory: fixes p::"('a::euclidean_space) set" shows "convex hull p = {y. \s u. finite s \ s \ p \ card s \ DIM('a) + 1 \ (\x\s. 0 \ u x) \ setsum u s = 1 \ setsum (\v. u v *\<^sub>R v) s = y}" - unfolding convex_hull_explicit expand_set_eq mem_Collect_eq + unfolding convex_hull_explicit set_ext_iff mem_Collect_eq proof(rule,rule) fix y let ?P = "\n. \s u. finite s \ card s = n \ s \ p \ (\x\s. 0 \ u x) \ setsum u s = 1 \ (\v\s. u v *\<^sub>R v) = y" assume "\s u. finite s \ s \ p \ (\x\s. 0 \ u x) \ setsum u s = 1 \ (\v\s. u v *\<^sub>R v) = y" @@ -939,7 +939,7 @@ lemma caratheodory: "convex hull p = {x::'a::euclidean_space. \s. finite s \ s \ p \ card s \ DIM('a) + 1 \ x \ convex hull s}" - unfolding expand_set_eq apply(rule, rule) unfolding mem_Collect_eq proof- + unfolding set_ext_iff apply(rule, rule) unfolding mem_Collect_eq proof- fix x assume "x \ convex hull p" then obtain s u where "finite s" "s \ p" "card s \ DIM('a) + 1" "\x\s. 0 \ u x" "setsum u s = 1" "(\v\s. u v *\<^sub>R v) = x"unfolding convex_hull_caratheodory by auto @@ -1029,7 +1029,7 @@ case (Suc n) show ?case proof(cases "n=0") case True have "{x. \t. finite t \ t \ s \ card t \ Suc n \ x \ convex hull t} = s" - unfolding expand_set_eq and mem_Collect_eq proof(rule, rule) + unfolding set_ext_iff and mem_Collect_eq proof(rule, rule) fix x assume "\t. finite t \ t \ s \ card t \ Suc n \ x \ convex hull t" then obtain t where t:"finite t" "t \ s" "card t \ Suc n" "x \ convex hull t" by auto show "x\s" proof(cases "card t = 0") @@ -1048,7 +1048,7 @@ case False have "{x. \t. finite t \ t \ s \ card t \ Suc n \ x \ convex hull t} = { (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 0 \ u \ u \ 1 \ x \ s \ y \ {x. \t. finite t \ t \ s \ card t \ n \ x \ convex hull t}}" - unfolding expand_set_eq and mem_Collect_eq proof(rule,rule) + unfolding set_ext_iff and mem_Collect_eq proof(rule,rule) fix x assume "\u v c. x = (1 - c) *\<^sub>R u + c *\<^sub>R v \ 0 \ c \ c \ 1 \ u \ s \ (\t. finite t \ t \ s \ card t \ n \ v \ convex hull t)" then obtain u v c t where obt:"x = (1 - c) *\<^sub>R u + c *\<^sub>R v"