diff -r 19efc2af3e6c -r f967a16dfcdd src/HOL/Probability/Lebesgue_Integration.thy --- a/src/HOL/Probability/Lebesgue_Integration.thy Mon Sep 06 22:58:06 2010 +0200 +++ b/src/HOL/Probability/Lebesgue_Integration.thy Tue Sep 07 10:05:19 2010 +0200 @@ -1106,7 +1106,7 @@ by (rule positive_integral_isoton) (auto intro!: borel_measurable_pinfreal_setsum assms positive_integral_mono arg_cong[where f=Sup] - simp: isoton_def le_fun_def psuminf_def expand_fun_eq SUPR_def Sup_fun_def) + simp: isoton_def le_fun_def psuminf_def ext_iff SUPR_def Sup_fun_def) thus ?thesis by (auto simp: isoton_def psuminf_def positive_integral_setsum[OF assms]) qed @@ -1365,7 +1365,7 @@ then have *: "(\x. g x * indicator A x) = g" "\x. g x * indicator A x = g x" "\x. g x \ f x" - by (auto simp: le_fun_def expand_fun_eq indicator_def split: split_if_asm) + by (auto simp: le_fun_def ext_iff indicator_def split: split_if_asm) from g show "\x. simple_function (\xa. x xa * indicator A xa) \ x \ f \ (\xa\A. \ \ x xa) \ simple_integral g = simple_integral (\xa. x xa * indicator A xa)" using `A \ sets M`[THEN sets_into_space]