diff -r 493b818e8e10 -r fad29d2a17a5 src/HOL/Analysis/Cartesian_Space.thy --- a/src/HOL/Analysis/Cartesian_Space.thy Wed May 02 13:49:38 2018 +0200 +++ b/src/HOL/Analysis/Cartesian_Space.thy Thu May 03 15:07:14 2018 +0200 @@ -219,11 +219,7 @@ { fix A A' :: "'a ^'n^'n" assume AA': "A ** A' = mat 1" have sA: "surj (( *v) A)" - unfolding surj_def - apply clarify - apply (rule_tac x="(A' *v y)" in exI) - apply (simp add: matrix_vector_mul_assoc AA') - done + using AA' matrix_right_invertible_surjective by auto from vec.linear_surjective_isomorphism[OF matrix_vector_mul_linear_gen sA] obtain f' :: "'a ^'n \ 'a ^'n" where f': "Vector_Spaces.linear ( *s) ( *s) f'" "\x. f' (A *v x) = x" "\x. A *v f' x = x" by blast @@ -244,11 +240,64 @@ shows "invertible A \ (\(B::'a^'n^'n). B ** A = mat 1)" by (metis invertible_def matrix_left_right_inverse) - lemma invertible_right_inverse: +lemma invertible_right_inverse: fixes A :: "'a::{field}^'n^'n" shows "invertible A \ (\(B::'a^'n^'n). A** B = mat 1)" by (metis invertible_def matrix_left_right_inverse) +lemma invertible_mult: + assumes inv_A: "invertible A" + and inv_B: "invertible B" + shows "invertible (A**B)" +proof - + obtain A' where AA': "A ** A' = mat 1" and A'A: "A' ** A = mat 1" + using inv_A unfolding invertible_def by blast + obtain B' where BB': "B ** B' = mat 1" and B'B: "B' ** B = mat 1" + using inv_B unfolding invertible_def by blast + show ?thesis + proof (unfold invertible_def, rule exI[of _ "B'**A'"], rule conjI) + have "A ** B ** (B' ** A') = A ** (B ** (B' ** A'))" + using matrix_mul_assoc[of A B "(B' ** A')", symmetric] . + also have "... = A ** (B ** B' ** A')" unfolding matrix_mul_assoc[of B "B'" "A'"] .. + also have "... = A ** (mat 1 ** A')" unfolding BB' .. + also have "... = A ** A'" unfolding matrix_mul_lid .. + also have "... = mat 1" unfolding AA' .. + finally show "A ** B ** (B' ** A') = mat (1::'a)" . + have "B' ** A' ** (A ** B) = B' ** (A' ** (A ** B))" using matrix_mul_assoc[of B' A' "(A ** B)", symmetric] . + also have "... = B' ** (A' ** A ** B)" unfolding matrix_mul_assoc[of A' A B] .. + also have "... = B' ** (mat 1 ** B)" unfolding A'A .. + also have "... = B' ** B" unfolding matrix_mul_lid .. + also have "... = mat 1" unfolding B'B .. + finally show "B' ** A' ** (A ** B) = mat 1" . + qed +qed + +lemma transpose_invertible: + fixes A :: "real^'n^'n" + assumes "invertible A" + shows "invertible (transpose A)" + by (meson assms invertible_def matrix_left_right_inverse right_invertible_transpose) + +lemma vector_matrix_mul_assoc: + fixes v :: "('a::comm_semiring_1)^'n" + shows "(v v* M) v* N = v v* (M ** N)" +proof - + from matrix_vector_mul_assoc + have "transpose N *v (transpose M *v v) = (transpose N ** transpose M) *v v" by fast + thus "(v v* M) v* N = v v* (M ** N)" + by (simp add: matrix_transpose_mul [symmetric]) +qed + +lemma matrix_scaleR_vector_ac: + fixes A :: "real^('m::finite)^'n" + shows "A *v (k *\<^sub>R v) = k *\<^sub>R A *v v" + by (metis matrix_vector_mult_scaleR transpose_scalar vector_scaleR_matrix_ac vector_transpose_matrix) + +lemma scaleR_matrix_vector_assoc: + fixes A :: "real^('m::finite)^'n" + shows "k *\<^sub>R (A *v v) = k *\<^sub>R A *v v" + by (metis matrix_scaleR_vector_ac matrix_vector_mult_scaleR) + (*Finally, some interesting theorems and interpretations that don't appear in any file of the library.*)