diff -r 62b6288e6005 -r fb28eaa07e01 src/ZF/ex/Mutil.ML --- a/src/ZF/ex/Mutil.ML Mon Jun 22 17:12:27 1998 +0200 +++ b/src/ZF/ex/Mutil.ML Mon Jun 22 17:13:09 1998 +0200 @@ -11,33 +11,33 @@ (** Basic properties of evnodd **) -goalw thy [evnodd_def] ": evnodd(A,b) <-> : A & (i#+j) mod 2 = b"; +Goalw [evnodd_def] ": evnodd(A,b) <-> : A & (i#+j) mod 2 = b"; by (Blast_tac 1); qed "evnodd_iff"; -goalw thy [evnodd_def] "evnodd(A, b) <= A"; +Goalw [evnodd_def] "evnodd(A, b) <= A"; by (Blast_tac 1); qed "evnodd_subset"; (* Finite(X) ==> Finite(evnodd(X,b)) *) bind_thm("Finite_evnodd", evnodd_subset RS subset_imp_lepoll RS lepoll_Finite); -goalw thy [evnodd_def] "evnodd(A Un B, b) = evnodd(A,b) Un evnodd(B,b)"; +Goalw [evnodd_def] "evnodd(A Un B, b) = evnodd(A,b) Un evnodd(B,b)"; by (simp_tac (simpset() addsimps [Collect_Un]) 1); qed "evnodd_Un"; -goalw thy [evnodd_def] "evnodd(A - B, b) = evnodd(A,b) - evnodd(B,b)"; +Goalw [evnodd_def] "evnodd(A - B, b) = evnodd(A,b) - evnodd(B,b)"; by (simp_tac (simpset() addsimps [Collect_Diff]) 1); qed "evnodd_Diff"; -goalw thy [evnodd_def] +Goalw [evnodd_def] "evnodd(cons(,C), b) = \ \ if((i#+j) mod 2 = b, cons(, evnodd(C,b)), evnodd(C,b))"; by (asm_simp_tac (simpset() addsimps [evnodd_def, Collect_cons] setloop split_tac [expand_if]) 1); qed "evnodd_cons"; -goalw thy [evnodd_def] "evnodd(0, b) = 0"; +Goalw [evnodd_def] "evnodd(0, b) = 0"; by (simp_tac (simpset() addsimps [evnodd_def]) 1); qed "evnodd_0"; @@ -45,11 +45,11 @@ (*** Dominoes ***) -goal thy "!!d. d:domino ==> Finite(d)"; +Goal "!!d. d:domino ==> Finite(d)"; by (blast_tac (claset() addSIs [Finite_cons, Finite_0] addEs [domino.elim]) 1); qed "domino_Finite"; -goal thy "!!d. [| d:domino; b<2 |] ==> EX i' j'. evnodd(d,b) = {}"; +Goal "!!d. [| d:domino; b<2 |] ==> EX i' j'. evnodd(d,b) = {}"; by (eresolve_tac [domino.elim] 1); by (res_inst_tac [("k1", "i#+j")] (mod2_cases RS disjE) 2); by (res_inst_tac [("k1", "i#+j")] (mod2_cases RS disjE) 1); @@ -65,7 +65,7 @@ (** The union of two disjoint tilings is a tiling **) -goal thy "!!t. t: tiling(A) ==> \ +Goal "!!t. t: tiling(A) ==> \ \ u: tiling(A) --> t Int u = 0 --> t Un u : tiling(A)"; by (etac tiling.induct 1); by (simp_tac (simpset() addsimps tiling.intrs) 1); @@ -74,13 +74,13 @@ by (blast_tac (claset() addIs tiling.intrs) 1); qed_spec_mp "tiling_UnI"; -goal thy "!!t. t:tiling(domino) ==> Finite(t)"; +Goal "!!t. t:tiling(domino) ==> Finite(t)"; by (eresolve_tac [tiling.induct] 1); by (rtac Finite_0 1); by (blast_tac (claset() addSIs [Finite_Un] addIs [domino_Finite]) 1); qed "tiling_domino_Finite"; -goal thy "!!t. t: tiling(domino) ==> |evnodd(t,0)| = |evnodd(t,1)|"; +Goal "!!t. t: tiling(domino) ==> |evnodd(t,0)| = |evnodd(t,1)|"; by (eresolve_tac [tiling.induct] 1); by (simp_tac (simpset() addsimps [evnodd_def]) 1); by (res_inst_tac [("b1","0")] (domino_singleton RS exE) 1); @@ -95,7 +95,7 @@ by (blast_tac (claset() addSDs [evnodd_subset RS subsetD] addEs [equalityE]) 1); qed "tiling_domino_0_1"; -goal thy "!!i n. [| i: nat; n: nat |] ==> {i} * (n #+ n) : tiling(domino)"; +Goal "!!i n. [| i: nat; n: nat |] ==> {i} * (n #+ n) : tiling(domino)"; by (nat_ind_tac "n" [] 1); by (simp_tac (simpset() addsimps tiling.intrs) 1); by (asm_simp_tac (simpset() addsimps [Un_assoc RS sym, Sigma_succ2]) 1); @@ -108,7 +108,7 @@ by (blast_tac (claset() addEs [mem_irrefl, mem_asym]) 1); qed "dominoes_tile_row"; -goal thy "!!m n. [| m: nat; n: nat |] ==> m * (n #+ n) : tiling(domino)"; +Goal "!!m n. [| m: nat; n: nat |] ==> m * (n #+ n) : tiling(domino)"; by (nat_ind_tac "m" [] 1); by (simp_tac (simpset() addsimps tiling.intrs) 1); by (asm_simp_tac (simpset() addsimps [Sigma_succ1]) 1); @@ -117,7 +117,7 @@ qed "dominoes_tile_matrix"; -goal thy "!!m n. [| m: nat; n: nat; \ +Goal "!!m n. [| m: nat; n: nat; \ \ t = (succ(m)#+succ(m))*(succ(n)#+succ(n)); \ \ t' = t - {<0,0>} - {} |] ==> \ \ t' ~: tiling(domino)";