diff -r 7c717ba55a0b -r fb9ae0727548 src/HOL/Library/Product_Vector.thy --- a/src/HOL/Library/Product_Vector.thy Wed Apr 02 18:35:02 2014 +0200 +++ b/src/HOL/Library/Product_Vector.thy Wed Apr 02 18:35:07 2014 +0200 @@ -204,13 +204,13 @@ lemma continuous_Pair[continuous_intros]: "continuous F f \ continuous F g \ continuous F (\x. (f x, g x))" unfolding continuous_def by (rule tendsto_Pair) -lemma continuous_on_fst[continuous_on_intros]: "continuous_on s f \ continuous_on s (\x. fst (f x))" +lemma continuous_on_fst[continuous_intros]: "continuous_on s f \ continuous_on s (\x. fst (f x))" unfolding continuous_on_def by (auto intro: tendsto_fst) -lemma continuous_on_snd[continuous_on_intros]: "continuous_on s f \ continuous_on s (\x. snd (f x))" +lemma continuous_on_snd[continuous_intros]: "continuous_on s f \ continuous_on s (\x. snd (f x))" unfolding continuous_on_def by (auto intro: tendsto_snd) -lemma continuous_on_Pair[continuous_on_intros]: "continuous_on s f \ continuous_on s g \ continuous_on s (\x. (f x, g x))" +lemma continuous_on_Pair[continuous_intros]: "continuous_on s f \ continuous_on s g \ continuous_on s (\x. (f x, g x))" unfolding continuous_on_def by (auto intro: tendsto_Pair) lemma isCont_fst [simp]: "isCont f a \ isCont (\x. fst (f x)) a"