diff -r 7c717ba55a0b -r fb9ae0727548 src/HOL/Multivariate_Analysis/Derivative.thy --- a/src/HOL/Multivariate_Analysis/Derivative.thy Wed Apr 02 18:35:02 2014 +0200 +++ b/src/HOL/Multivariate_Analysis/Derivative.thy Wed Apr 02 18:35:07 2014 +0200 @@ -678,7 +678,7 @@ show "((\x. f x - (f b - f a) / (b - a) * x) has_derivative (\xa. f' x xa - (f b - f a) / (b - a) * xa)) (at x)" by (intro has_derivative_intros assms(3)[rule_format,OF x] mult_right_has_derivative) - qed (insert assms(1,2), auto intro!: continuous_on_intros simp: field_simps) + qed (insert assms(1,2), auto intro!: continuous_intros simp: field_simps) then obtain x where "x \ {a <..< b}" "(\xa. f' x xa - (f b - f a) / (b - a) * xa) = (\v. 0)" .. @@ -749,7 +749,7 @@ have "\x\{a<.. f b - (f b - f a) \ f a = (f b - f a) \ f' x (b - a)" apply (rule mvt) apply (rule assms(1)) - apply (intro continuous_on_intros assms(2)) + apply (intro continuous_intros assms(2)) using assms(3) apply (fast intro: has_derivative_inner_right) done @@ -798,7 +798,7 @@ by (auto simp add: algebra_simps) then have 1: "continuous_on {0 .. 1} (f \ ?p)" apply - - apply (rule continuous_on_intros)+ + apply (rule continuous_intros)+ unfolding continuous_on_eq_continuous_within apply rule apply (rule differentiable_imp_continuous_within) @@ -1138,7 +1138,7 @@ show ?thesis unfolding * apply (rule brouwer[OF assms(1-3), of "\y. x + (y - f y)"]) - apply (rule continuous_on_intros assms)+ + apply (rule continuous_intros assms)+ using assms(4-6) apply auto done @@ -1209,7 +1209,7 @@ show "continuous_on (cball (f x) e) (\y. f (x + g' (y - f x)))" unfolding g'.diff apply (rule continuous_on_compose[of _ _ f, unfolded o_def]) - apply (rule continuous_on_intros linear_continuous_on[OF assms(5)])+ + apply (rule continuous_intros linear_continuous_on[OF assms(5)])+ apply (rule continuous_on_subset[OF assms(2)]) apply rule apply (unfold image_iff)