diff -r 7c717ba55a0b -r fb9ae0727548 src/HOL/Multivariate_Analysis/Path_Connected.thy --- a/src/HOL/Multivariate_Analysis/Path_Connected.thy Wed Apr 02 18:35:02 2014 +0200 +++ b/src/HOL/Multivariate_Analysis/Path_Connected.thy Wed Apr 02 18:35:07 2014 +0200 @@ -108,7 +108,7 @@ have *: "\g. path g \ path (reversepath g)" unfolding path_def reversepath_def apply (rule continuous_on_compose[unfolded o_def, of _ "\x. 1 - x"]) - apply (intro continuous_on_intros) + apply (intro continuous_intros) apply (rule continuous_on_subset[of "{0..1}"]) apply assumption apply auto @@ -135,7 +135,7 @@ by (intro continuous_on_cong refl) (auto simp: joinpaths_def pathfinish_def pathstart_def) show "continuous_on {0..1} g1" and "continuous_on {0..1} g2" unfolding g1 g2 - by (auto intro!: continuous_on_intros continuous_on_subset[OF cont] simp del: o_apply) + by (auto intro!: continuous_intros continuous_on_subset[OF cont] simp del: o_apply) next assume g1g2: "continuous_on {0..1} g1" "continuous_on {0..1} g2" have 01: "{0 .. 1} = {0..1/2} \ {1/2 .. 1::real}" @@ -157,7 +157,7 @@ show "continuous_on {0..1} (g1 +++ g2)" using assms unfolding joinpaths_def 01 - apply (intro continuous_on_cases closed_atLeastAtMost g1g2[THEN continuous_on_compose2] continuous_on_intros) + apply (intro continuous_on_cases closed_atLeastAtMost g1g2[THEN continuous_on_compose2] continuous_intros) apply (auto simp: field_simps pathfinish_def pathstart_def intro!: 1 2) done qed @@ -423,9 +423,9 @@ apply (rule continuous_on_eq[of _ "g \ (\x. a - 1 + x)"]) defer prefer 3 - apply (rule continuous_on_intros)+ + apply (rule continuous_intros)+ prefer 2 - apply (rule continuous_on_intros)+ + apply (rule continuous_intros)+ apply (rule_tac[1-2] continuous_on_subset[OF assms(1)[unfolded path_def]]) using assms(3) and ** apply auto @@ -589,7 +589,7 @@ unfolding path_defs apply (rule_tac x="\u. x" in exI) using assms - apply (auto intro!: continuous_on_intros) + apply (auto intro!: continuous_intros) done lemma path_component_refl_eq: "path_component s x x \ x \ s" @@ -977,11 +977,11 @@ done have "continuous_on (UNIV - {0}) (\x::'a. 1 / norm x)" unfolding field_divide_inverse - by (simp add: continuous_on_intros) + by (simp add: continuous_intros) then show ?thesis unfolding * ** using path_connected_punctured_universe[OF assms] - by (auto intro!: path_connected_continuous_image continuous_on_intros) + by (auto intro!: path_connected_continuous_image continuous_intros) qed lemma connected_sphere: "2 \ DIM('a::euclidean_space) \ connected {x::'a. norm (x - a) = r}"