diff -r 113cee845044 -r fba08009ff3e src/HOL/Fun.thy --- a/src/HOL/Fun.thy Thu Jul 28 20:39:51 2016 +0200 +++ b/src/HOL/Fun.thy Fri Jul 29 09:49:23 2016 +0200 @@ -666,6 +666,12 @@ lemma override_on_apply_in[simp]: "a \ A \ (override_on f g A) a = g a" by (simp add:override_on_def) +lemma override_on_insert: "override_on f g (insert x X) = (override_on f g X)(x:=g x)" +unfolding override_on_def by (simp add: fun_eq_iff) + +lemma override_on_insert': "override_on f g (insert x X) = (override_on (f(x:=g x)) g X)" +unfolding override_on_def by (simp add: fun_eq_iff) + subsection \\swap\\