diff -r 93d5408eb7d9 -r fbd097aec213 doc-src/TutorialI/Ifexpr/document/Ifexpr.tex --- a/doc-src/TutorialI/Ifexpr/document/Ifexpr.tex Sun Oct 21 19:48:19 2001 +0200 +++ b/doc-src/TutorialI/Ifexpr/document/Ifexpr.tex Sun Oct 21 19:49:29 2001 +0200 @@ -1,9 +1,11 @@ % \begin{isabellebody}% \def\isabellecontext{Ifexpr}% +\isamarkupfalse% % \isamarkupsubsection{Case Study: Boolean Expressions% } +\isamarkuptrue% % \begin{isamarkuptext}% \label{sec:boolex}\index{boolean expressions example|(} @@ -11,17 +13,21 @@ expressions and some algorithms for manipulating them, and it demonstrates the constructs introduced above.% \end{isamarkuptext}% +\isamarkuptrue% % \isamarkupsubsubsection{Modelling Boolean Expressions% } +\isamarkuptrue% % \begin{isamarkuptext}% We want to represent boolean expressions built up from variables and constants by negation and conjunction. The following datatype serves exactly that purpose:% \end{isamarkuptext}% +\isamarkuptrue% \isacommand{datatype}\ boolex\ {\isacharequal}\ Const\ bool\ {\isacharbar}\ Var\ nat\ {\isacharbar}\ Neg\ boolex\isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ And\ boolex\ boolex% +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ And\ boolex\ boolex\isamarkupfalse% +% \begin{isamarkuptext}% \noindent The two constants are represented by \isa{Const\ True} and @@ -37,12 +43,15 @@ \emph{environment} of type \isa{nat\ {\isasymRightarrow}\ bool}, which maps variables to their values:% \end{isamarkuptext}% +\isamarkuptrue% \isacommand{consts}\ value\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}boolex\ {\isasymRightarrow}\ {\isacharparenleft}nat\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ bool{\isachardoublequote}\isanewline +\isamarkupfalse% \isacommand{primrec}\isanewline {\isachardoublequote}value\ {\isacharparenleft}Const\ b{\isacharparenright}\ env\ {\isacharequal}\ b{\isachardoublequote}\isanewline {\isachardoublequote}value\ {\isacharparenleft}Var\ x{\isacharparenright}\ \ \ env\ {\isacharequal}\ env\ x{\isachardoublequote}\isanewline {\isachardoublequote}value\ {\isacharparenleft}Neg\ b{\isacharparenright}\ \ \ env\ {\isacharequal}\ {\isacharparenleft}{\isasymnot}\ value\ b\ env{\isacharparenright}{\isachardoublequote}\isanewline -{\isachardoublequote}value\ {\isacharparenleft}And\ b\ c{\isacharparenright}\ env\ {\isacharequal}\ {\isacharparenleft}value\ b\ env\ {\isasymand}\ value\ c\ env{\isacharparenright}{\isachardoublequote}% +{\isachardoublequote}value\ {\isacharparenleft}And\ b\ c{\isacharparenright}\ env\ {\isacharequal}\ {\isacharparenleft}value\ b\ env\ {\isasymand}\ value\ c\ env{\isacharparenright}{\isachardoublequote}\isamarkupfalse% +% \begin{isamarkuptext}% \noindent \subsubsection{If-Expressions} @@ -52,17 +61,22 @@ from constants (\isa{CIF}), variables (\isa{VIF}) and conditionals (\isa{IF}):% \end{isamarkuptext}% -\isacommand{datatype}\ ifex\ {\isacharequal}\ CIF\ bool\ {\isacharbar}\ VIF\ nat\ {\isacharbar}\ IF\ ifex\ ifex\ ifex% +\isamarkuptrue% +\isacommand{datatype}\ ifex\ {\isacharequal}\ CIF\ bool\ {\isacharbar}\ VIF\ nat\ {\isacharbar}\ IF\ ifex\ ifex\ ifex\isamarkupfalse% +% \begin{isamarkuptext}% \noindent The evaluation of If-expressions proceeds as for \isa{boolex}:% \end{isamarkuptext}% +\isamarkuptrue% \isacommand{consts}\ valif\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}ifex\ {\isasymRightarrow}\ {\isacharparenleft}nat\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ bool{\isachardoublequote}\isanewline +\isamarkupfalse% \isacommand{primrec}\isanewline {\isachardoublequote}valif\ {\isacharparenleft}CIF\ b{\isacharparenright}\ \ \ \ env\ {\isacharequal}\ b{\isachardoublequote}\isanewline {\isachardoublequote}valif\ {\isacharparenleft}VIF\ x{\isacharparenright}\ \ \ \ env\ {\isacharequal}\ env\ x{\isachardoublequote}\isanewline {\isachardoublequote}valif\ {\isacharparenleft}IF\ b\ t\ e{\isacharparenright}\ env\ {\isacharequal}\ {\isacharparenleft}if\ valif\ b\ env\ then\ valif\ t\ env\isanewline -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ else\ valif\ e\ env{\isacharparenright}{\isachardoublequote}% +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ else\ valif\ e\ env{\isacharparenright}{\isachardoublequote}\isamarkupfalse% +% \begin{isamarkuptext}% \subsubsection{Converting Boolean and If-Expressions} @@ -70,25 +84,34 @@ formulae, whereas \isa{ifex} is designed for efficiency. It is easy to translate from \isa{boolex} into \isa{ifex}:% \end{isamarkuptext}% +\isamarkuptrue% \isacommand{consts}\ bool{\isadigit{2}}if\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}boolex\ {\isasymRightarrow}\ ifex{\isachardoublequote}\isanewline +\isamarkupfalse% \isacommand{primrec}\isanewline {\isachardoublequote}bool{\isadigit{2}}if\ {\isacharparenleft}Const\ b{\isacharparenright}\ {\isacharequal}\ CIF\ b{\isachardoublequote}\isanewline {\isachardoublequote}bool{\isadigit{2}}if\ {\isacharparenleft}Var\ x{\isacharparenright}\ \ \ {\isacharequal}\ VIF\ x{\isachardoublequote}\isanewline {\isachardoublequote}bool{\isadigit{2}}if\ {\isacharparenleft}Neg\ b{\isacharparenright}\ \ \ {\isacharequal}\ IF\ {\isacharparenleft}bool{\isadigit{2}}if\ b{\isacharparenright}\ {\isacharparenleft}CIF\ False{\isacharparenright}\ {\isacharparenleft}CIF\ True{\isacharparenright}{\isachardoublequote}\isanewline -{\isachardoublequote}bool{\isadigit{2}}if\ {\isacharparenleft}And\ b\ c{\isacharparenright}\ {\isacharequal}\ IF\ {\isacharparenleft}bool{\isadigit{2}}if\ b{\isacharparenright}\ {\isacharparenleft}bool{\isadigit{2}}if\ c{\isacharparenright}\ {\isacharparenleft}CIF\ False{\isacharparenright}{\isachardoublequote}% +{\isachardoublequote}bool{\isadigit{2}}if\ {\isacharparenleft}And\ b\ c{\isacharparenright}\ {\isacharequal}\ IF\ {\isacharparenleft}bool{\isadigit{2}}if\ b{\isacharparenright}\ {\isacharparenleft}bool{\isadigit{2}}if\ c{\isacharparenright}\ {\isacharparenleft}CIF\ False{\isacharparenright}{\isachardoublequote}\isamarkupfalse% +% \begin{isamarkuptext}% \noindent At last, we have something we can verify: that \isa{bool{\isadigit{2}}if} preserves the value of its argument:% \end{isamarkuptext}% -\isacommand{lemma}\ {\isachardoublequote}valif\ {\isacharparenleft}bool{\isadigit{2}}if\ b{\isacharparenright}\ env\ {\isacharequal}\ value\ b\ env{\isachardoublequote}% +\isamarkuptrue% +\isacommand{lemma}\ {\isachardoublequote}valif\ {\isacharparenleft}bool{\isadigit{2}}if\ b{\isacharparenright}\ env\ {\isacharequal}\ value\ b\ env{\isachardoublequote}\isamarkupfalse% +% \begin{isamarkuptxt}% \noindent The proof is canonical:% \end{isamarkuptxt}% +\isamarkuptrue% \isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ b{\isacharparenright}\isanewline +\isamarkupfalse% \isacommand{apply}{\isacharparenleft}auto{\isacharparenright}\isanewline -\isacommand{done}% +\isamarkupfalse% +\isacommand{done}\isamarkupfalse% +% \begin{isamarkuptext}% \noindent In fact, all proofs in this case study look exactly like this. Hence we do @@ -101,31 +124,46 @@ \isa{IF\ b\ {\isacharparenleft}IF\ x\ z\ u{\isacharparenright}\ {\isacharparenleft}IF\ y\ z\ u{\isacharparenright}}, which has the same value. The following primitive recursive functions perform this task:% \end{isamarkuptext}% +\isamarkuptrue% \isacommand{consts}\ normif\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}ifex\ {\isasymRightarrow}\ ifex\ {\isasymRightarrow}\ ifex\ {\isasymRightarrow}\ ifex{\isachardoublequote}\isanewline +\isamarkupfalse% \isacommand{primrec}\isanewline {\isachardoublequote}normif\ {\isacharparenleft}CIF\ b{\isacharparenright}\ \ \ \ t\ e\ {\isacharequal}\ IF\ {\isacharparenleft}CIF\ b{\isacharparenright}\ t\ e{\isachardoublequote}\isanewline {\isachardoublequote}normif\ {\isacharparenleft}VIF\ x{\isacharparenright}\ \ \ \ t\ e\ {\isacharequal}\ IF\ {\isacharparenleft}VIF\ x{\isacharparenright}\ t\ e{\isachardoublequote}\isanewline {\isachardoublequote}normif\ {\isacharparenleft}IF\ b\ t\ e{\isacharparenright}\ u\ f\ {\isacharequal}\ normif\ b\ {\isacharparenleft}normif\ t\ u\ f{\isacharparenright}\ {\isacharparenleft}normif\ e\ u\ f{\isacharparenright}{\isachardoublequote}\isanewline \isanewline +\isamarkupfalse% \isacommand{consts}\ norm\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}ifex\ {\isasymRightarrow}\ ifex{\isachardoublequote}\isanewline +\isamarkupfalse% \isacommand{primrec}\isanewline {\isachardoublequote}norm\ {\isacharparenleft}CIF\ b{\isacharparenright}\ \ \ \ {\isacharequal}\ CIF\ b{\isachardoublequote}\isanewline {\isachardoublequote}norm\ {\isacharparenleft}VIF\ x{\isacharparenright}\ \ \ \ {\isacharequal}\ VIF\ x{\isachardoublequote}\isanewline -{\isachardoublequote}norm\ {\isacharparenleft}IF\ b\ t\ e{\isacharparenright}\ {\isacharequal}\ normif\ b\ {\isacharparenleft}norm\ t{\isacharparenright}\ {\isacharparenleft}norm\ e{\isacharparenright}{\isachardoublequote}% +{\isachardoublequote}norm\ {\isacharparenleft}IF\ b\ t\ e{\isacharparenright}\ {\isacharequal}\ normif\ b\ {\isacharparenleft}norm\ t{\isacharparenright}\ {\isacharparenleft}norm\ e{\isacharparenright}{\isachardoublequote}\isamarkupfalse% +% \begin{isamarkuptext}% \noindent Their interplay is tricky; we leave it to you to develop an intuitive understanding. Fortunately, Isabelle can help us to verify that the transformation preserves the value of the expression:% \end{isamarkuptext}% -\isacommand{theorem}\ {\isachardoublequote}valif\ {\isacharparenleft}norm\ b{\isacharparenright}\ env\ {\isacharequal}\ valif\ b\ env{\isachardoublequote}% +\isamarkuptrue% +\isacommand{theorem}\ {\isachardoublequote}valif\ {\isacharparenleft}norm\ b{\isacharparenright}\ env\ {\isacharequal}\ valif\ b\ env{\isachardoublequote}\isamarkupfalse% +\isamarkupfalse% +% \begin{isamarkuptext}% \noindent The proof is canonical, provided we first show the following simplification lemma, which also helps to understand what \isa{normif} does:% \end{isamarkuptext}% +\isamarkuptrue% \isacommand{lemma}\ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\isanewline -\ \ {\isachardoublequote}{\isasymforall}t\ e{\isachardot}\ valif\ {\isacharparenleft}normif\ b\ t\ e{\isacharparenright}\ env\ {\isacharequal}\ valif\ {\isacharparenleft}IF\ b\ t\ e{\isacharparenright}\ env{\isachardoublequote}% +\ \ {\isachardoublequote}{\isasymforall}t\ e{\isachardot}\ valif\ {\isacharparenleft}normif\ b\ t\ e{\isacharparenright}\ env\ {\isacharequal}\ valif\ {\isacharparenleft}IF\ b\ t\ e{\isacharparenright}\ env{\isachardoublequote}\isamarkupfalse% +\isamarkupfalse% +\isamarkupfalse% +\isamarkupfalse% +\isamarkupfalse% +\isamarkupfalse% +% \begin{isamarkuptext}% \noindent Note that the lemma does not have a name, but is implicitly used in the proof @@ -134,18 +172,28 @@ But how can we be sure that \isa{norm} really produces a normal form in the above sense? We define a function that tests If-expressions for normality:% \end{isamarkuptext}% +\isamarkuptrue% \isacommand{consts}\ normal\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}ifex\ {\isasymRightarrow}\ bool{\isachardoublequote}\isanewline +\isamarkupfalse% \isacommand{primrec}\isanewline {\isachardoublequote}normal{\isacharparenleft}CIF\ b{\isacharparenright}\ {\isacharequal}\ True{\isachardoublequote}\isanewline {\isachardoublequote}normal{\isacharparenleft}VIF\ x{\isacharparenright}\ {\isacharequal}\ True{\isachardoublequote}\isanewline {\isachardoublequote}normal{\isacharparenleft}IF\ b\ t\ e{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}normal\ t\ {\isasymand}\ normal\ e\ {\isasymand}\isanewline -\ \ \ \ \ {\isacharparenleft}case\ b\ of\ CIF\ b\ {\isasymRightarrow}\ True\ {\isacharbar}\ VIF\ x\ {\isasymRightarrow}\ True\ {\isacharbar}\ IF\ x\ y\ z\ {\isasymRightarrow}\ False{\isacharparenright}{\isacharparenright}{\isachardoublequote}% +\ \ \ \ \ {\isacharparenleft}case\ b\ of\ CIF\ b\ {\isasymRightarrow}\ True\ {\isacharbar}\ VIF\ x\ {\isasymRightarrow}\ True\ {\isacharbar}\ IF\ x\ y\ z\ {\isasymRightarrow}\ False{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse% +% \begin{isamarkuptext}% \noindent Now we prove \isa{normal\ {\isacharparenleft}norm\ b{\isacharparenright}}. Of course, this requires a lemma about normality of \isa{normif}:% \end{isamarkuptext}% -\isacommand{lemma}{\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isasymforall}t\ e{\isachardot}\ normal{\isacharparenleft}normif\ b\ t\ e{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}normal\ t\ {\isasymand}\ normal\ e{\isacharparenright}{\isachardoublequote}% +\isamarkuptrue% +\isacommand{lemma}{\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isasymforall}t\ e{\isachardot}\ normal{\isacharparenleft}normif\ b\ t\ e{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}normal\ t\ {\isasymand}\ normal\ e{\isacharparenright}{\isachardoublequote}\isamarkupfalse% +\isamarkupfalse% +\isamarkupfalse% +\isamarkupfalse% +\isamarkupfalse% +\isamarkupfalse% +% \begin{isamarkuptext}% \medskip How do we come up with the required lemmas? Try to prove the main theorems @@ -163,6 +211,8 @@ \end{exercise} \index{boolean expressions example|)}% \end{isamarkuptext}% +\isamarkuptrue% +\isamarkupfalse% \end{isabellebody}% %%% Local Variables: %%% mode: latex