diff -r cb3612cc41a3 -r fc075ae929e4 doc-src/TutorialI/Misc/document/AdvancedInd.tex --- a/doc-src/TutorialI/Misc/document/AdvancedInd.tex Sun Jan 30 20:48:50 2005 +0100 +++ b/doc-src/TutorialI/Misc/document/AdvancedInd.tex Tue Feb 01 18:01:57 2005 +0100 @@ -29,99 +29,11 @@ \isamarkuptrue% \isacommand{lemma}\ {\isachardoublequote}xs\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymLongrightarrow}\ hd{\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ last\ xs{\isachardoublequote}\isanewline \isamarkupfalse% -\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ xs{\isacharparenright}\isamarkupfalse% -% -\begin{isamarkuptxt}% -\noindent -But induction produces the warning -\begin{quote}\tt -Induction variable occurs also among premises! -\end{quote} -and leads to the base case -\begin{isabelle}% -\ {\isadigit{1}}{\isachardot}\ xs\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymLongrightarrow}\ hd\ {\isacharparenleft}rev\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharequal}\ last\ {\isacharbrackleft}{\isacharbrackright}% -\end{isabelle} -Simplification reduces the base case to this: -\begin{isabelle} -\ 1.\ xs\ {\isasymnoteq}\ []\ {\isasymLongrightarrow}\ hd\ []\ =\ last\ [] -\end{isabelle} -We cannot prove this equality because we do not know what \isa{hd} and -\isa{last} return when applied to \isa{{\isacharbrackleft}{\isacharbrackright}}. - -We should not have ignored the warning. Because the induction -formula is only the conclusion, induction does not affect the occurrence of \isa{xs} in the premises. -Thus the case that should have been trivial -becomes unprovable. Fortunately, the solution is easy:\footnote{A similar -heuristic applies to rule inductions; see \S\ref{sec:rtc}.} -\begin{quote} -\emph{Pull all occurrences of the induction variable into the conclusion -using \isa{{\isasymlongrightarrow}}.} -\end{quote} -Thus we should state the lemma as an ordinary -implication~(\isa{{\isasymlongrightarrow}}), letting -\attrdx{rule_format} (\S\ref{sec:forward}) convert the -result to the usual \isa{{\isasymLongrightarrow}} form:% -\end{isamarkuptxt}% +\isamarkupfalse% \isamarkuptrue% \isamarkupfalse% \isacommand{lemma}\ hd{\isacharunderscore}rev\ {\isacharbrackleft}rule{\isacharunderscore}format{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}xs\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymlongrightarrow}\ hd{\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ last\ xs{\isachardoublequote}\isamarkupfalse% \isamarkupfalse% -% -\begin{isamarkuptxt}% -\noindent -This time, induction leaves us with a trivial base case: -\begin{isabelle}% -\ {\isadigit{1}}{\isachardot}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymlongrightarrow}\ hd\ {\isacharparenleft}rev\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharequal}\ last\ {\isacharbrackleft}{\isacharbrackright}% -\end{isabelle} -And \isa{auto} completes the proof. - -If there are multiple premises $A@1$, \dots, $A@n$ containing the -induction variable, you should turn the conclusion $C$ into -\[ A@1 \longrightarrow \cdots A@n \longrightarrow C. \] -Additionally, you may also have to universally quantify some other variables, -which can yield a fairly complex conclusion. However, \isa{rule{\isacharunderscore}format} -can remove any number of occurrences of \isa{{\isasymforall}} and -\isa{{\isasymlongrightarrow}}. - -\index{induction!on a term}% -A second reason why your proposition may not be amenable to induction is that -you want to induct on a complex term, rather than a variable. In -general, induction on a term~$t$ requires rephrasing the conclusion~$C$ -as -\begin{equation}\label{eqn:ind-over-term} -\forall y@1 \dots y@n.~ x = t \longrightarrow C. -\end{equation} -where $y@1 \dots y@n$ are the free variables in $t$ and $x$ is a new variable. -Now you can perform induction on~$x$. An example appears in -\S\ref{sec:complete-ind} below. - -The very same problem may occur in connection with rule induction. Remember -that it requires a premise of the form $(x@1,\dots,x@k) \in R$, where $R$ is -some inductively defined set and the $x@i$ are variables. If instead we have -a premise $t \in R$, where $t$ is not just an $n$-tuple of variables, we -replace it with $(x@1,\dots,x@k) \in R$, and rephrase the conclusion $C$ as -\[ \forall y@1 \dots y@n.~ (x@1,\dots,x@k) = t \longrightarrow C. \] -For an example see \S\ref{sec:CTL-revisited} below. - -Of course, all premises that share free variables with $t$ need to be pulled into -the conclusion as well, under the \isa{{\isasymforall}}, again using \isa{{\isasymlongrightarrow}} as shown above. - -Readers who are puzzled by the form of statement -(\ref{eqn:ind-over-term}) above should remember that the -transformation is only performed to permit induction. Once induction -has been applied, the statement can be transformed back into something quite -intuitive. For example, applying wellfounded induction on $x$ (w.r.t.\ -$\prec$) to (\ref{eqn:ind-over-term}) and transforming the result a -little leads to the goal -\[ \bigwedge\overline{y}.\ - \forall \overline{z}.\ t\,\overline{z} \prec t\,\overline{y}\ \longrightarrow\ C\,\overline{z} - \ \Longrightarrow\ C\,\overline{y} \] -where $\overline{y}$ stands for $y@1 \dots y@n$ and the dependence of $t$ and -$C$ on the free variables of $t$ has been made explicit. -Unfortunately, this induction schema cannot be expressed as a -single theorem because it depends on the number of free variables in $t$ --- -the notation $\overline{y}$ is merely an informal device.% -\end{isamarkuptxt}% \isamarkuptrue% \isamarkupfalse% % @@ -170,41 +82,14 @@ \end{isamarkuptext}% \isamarkuptrue% \isacommand{lemma}\ f{\isacharunderscore}incr{\isacharunderscore}lem{\isacharcolon}\ {\isachardoublequote}{\isasymforall}i{\isachardot}\ k\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{\isachardoublequote}\isamarkupfalse% -% -\begin{isamarkuptxt}% -\noindent -To perform induction on \isa{k} using \isa{nat{\isacharunderscore}less{\isacharunderscore}induct}, we use -the same general induction method as for recursion induction (see -\S\ref{sec:recdef-induction}):% -\end{isamarkuptxt}% +\isamarkuptrue% +\isamarkupfalse% \isamarkuptrue% -\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ k\ rule{\isacharcolon}\ nat{\isacharunderscore}less{\isacharunderscore}induct{\isacharparenright}\isamarkupfalse% -% -\begin{isamarkuptxt}% -\noindent -We get the following proof state: -\begin{isabelle}% -\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymforall}m{\isacharless}n{\isachardot}\ {\isasymforall}i{\isachardot}\ m\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i\ {\isasymLongrightarrow}\ {\isasymforall}i{\isachardot}\ n\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i% -\end{isabelle} -After stripping the \isa{{\isasymforall}i}, the proof continues with a case -distinction on \isa{i}. The case \isa{i\ {\isacharequal}\ {\isadigit{0}}} is trivial and we focus on -the other case:% -\end{isamarkuptxt}% +\isamarkupfalse% +\isamarkupfalse% +\isamarkupfalse% \isamarkuptrue% -\isacommand{apply}{\isacharparenleft}rule\ allI{\isacharparenright}\isanewline \isamarkupfalse% -\isacommand{apply}{\isacharparenleft}case{\isacharunderscore}tac\ i{\isacharparenright}\isanewline -\ \isamarkupfalse% -\isacommand{apply}{\isacharparenleft}simp{\isacharparenright}\isamarkupfalse% -% -\begin{isamarkuptxt}% -\begin{isabelle}% -\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n\ i\ nat{\isachardot}\isanewline -\isaindent{\ {\isadigit{1}}{\isachardot}\ \ \ \ }{\isasymlbrakk}{\isasymforall}m{\isacharless}n{\isachardot}\ {\isasymforall}i{\isachardot}\ m\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{\isacharsemicolon}\ i\ {\isacharequal}\ Suc\ nat{\isasymrbrakk}\ {\isasymLongrightarrow}\ n\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i% -\end{isabelle}% -\end{isamarkuptxt}% -\isamarkuptrue% -\isacommand{by}{\isacharparenleft}blast\ intro{\isacharbang}{\isacharcolon}\ f{\isacharunderscore}ax\ Suc{\isacharunderscore}leI\ intro{\isacharcolon}\ le{\isacharunderscore}less{\isacharunderscore}trans{\isacharparenright}\isamarkupfalse% % \begin{isamarkuptext}% \noindent @@ -295,18 +180,10 @@ \isamarkuptrue% \isacommand{lemma}\ induct{\isacharunderscore}lem{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isasymAnd}n{\isacharcolon}{\isacharcolon}nat{\isachardot}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m\ {\isasymLongrightarrow}\ P\ n{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m{\isachardoublequote}\isanewline \isamarkupfalse% -\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ n{\isacharparenright}\isamarkupfalse% -% -\begin{isamarkuptxt}% -\noindent -The base case is vacuously true. For the induction step (\isa{m\ {\isacharless}\ Suc\ n}) we distinguish two cases: case \isa{m\ {\isacharless}\ n} is true by induction -hypothesis and case \isa{m\ {\isacharequal}\ n} follows from the assumption, again using -the induction hypothesis:% -\end{isamarkuptxt}% -\ \isamarkuptrue% -\isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline \isamarkupfalse% -\isacommand{by}{\isacharparenleft}blast\ elim{\isacharcolon}\ less{\isacharunderscore}SucE{\isacharparenright}\isamarkupfalse% +\isamarkuptrue% +\isamarkupfalse% +\isamarkupfalse% % \begin{isamarkuptext}% \noindent @@ -325,7 +202,7 @@ \isamarkuptrue% \isacommand{theorem}\ nat{\isacharunderscore}less{\isacharunderscore}induct{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isasymAnd}n{\isacharcolon}{\isacharcolon}nat{\isachardot}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m\ {\isasymLongrightarrow}\ P\ n{\isacharparenright}\ {\isasymLongrightarrow}\ P\ n{\isachardoublequote}\isanewline \isamarkupfalse% -\isacommand{by}{\isacharparenleft}insert\ induct{\isacharunderscore}lem{\isacharcomma}\ blast{\isacharparenright}\isamarkupfalse% +\isamarkupfalse% % \begin{isamarkuptext}% HOL already provides the mother of