diff -r cb3612cc41a3 -r fc075ae929e4 src/HOL/Library/Word.thy --- a/src/HOL/Library/Word.thy Sun Jan 30 20:48:50 2005 +0100 +++ b/src/HOL/Library/Word.thy Tue Feb 01 18:01:57 2005 +0100 @@ -455,7 +455,7 @@ proof (rule n_div_2_cases [of n]) assume [simp]: "n = 0" show ?thesis - apply (subst nat_to_bv_helper.simps [of n]) + apply (simp only: nat_to_bv_helper.simps [of n]) apply simp done next @@ -467,7 +467,7 @@ have ind': "\l. nat_to_bv_helper (n div 2) l = nat_to_bv_helper (n div 2) [] @ l" by blast show ?thesis - apply (subst nat_to_bv_helper.simps [of n]) + apply (simp only: nat_to_bv_helper.simps [of n]) apply (cases "n=0") apply simp apply (simp only: if_False) @@ -491,7 +491,7 @@ assume [simp]: "0 < n" show ?thesis apply (subst nat_to_bv_def [of n]) - apply (subst nat_to_bv_helper.simps [of n]) + apply (simp only: nat_to_bv_helper.simps [of n]) apply (subst unfold_nat_to_bv_helper) using prems apply simp @@ -545,7 +545,7 @@ by simp show ?thesis apply (subst nat_to_bv_def) - apply (subst nat_to_bv_helper.simps [of n]) + apply (simp only: nat_to_bv_helper.simps [of n]) apply (simp only: n0' if_False) apply (subst unfold_nat_to_bv_helper) apply (subst bv_to_nat_dist_append) @@ -2425,7 +2425,7 @@ from ki ij jl lw show ?thesis - apply (subst bv_sliceI [where ?j = i and ?i = j and ?w = w and ?w1.0 = "w1 @ w2" and ?w2.0 = w3 and ?w3.0 = "w4 @ w5"]) + apply (simplesubst bv_sliceI [where ?j = i and ?i = j and ?w = w and ?w1.0 = "w1 @ w2" and ?w2.0 = w3 and ?w3.0 = "w4 @ w5"]) apply simp_all apply (rule w_def) apply (simp add: w_defs min_def) @@ -2566,7 +2566,7 @@ apply (subst indq [symmetric]) apply (subst indq [symmetric]) apply auto - apply (subst nat_to_bv_helper.simps [of "2 * qq + 1"]) + apply (simp only: nat_to_bv_helper.simps [of "2 * qq + 1"]) apply simp apply safe apply (subgoal_tac "2 * qq + 1 ~= 2 * q") @@ -2575,7 +2575,7 @@ apply (subgoal_tac "(2 * qq + 1) div 2 = qq") apply simp apply (subst zdiv_zadd1_eq,simp) - apply (subst nat_to_bv_helper.simps [of "2 * qq"]) + apply (simp only: nat_to_bv_helper.simps [of "2 * qq"]) apply simp done qed