diff -r 965769fe2b63 -r fc1556774cfe src/HOL/Probability/Projective_Family.thy --- a/src/HOL/Probability/Projective_Family.thy Mon Dec 07 16:48:10 2015 +0000 +++ b/src/HOL/Probability/Projective_Family.thy Mon Dec 07 20:19:59 2015 +0100 @@ -3,7 +3,7 @@ Author: Johannes Hölzl, TU München *) -section {*Projective Family*} +section \Projective Family\ theory Projective_Family imports Finite_Product_Measure Giry_Monad @@ -22,11 +22,11 @@ proof cases assume x: "x \ (\\<^sub>E i\J. S i)" have "merge J (I - J) (x,y) \ (\x. restrict x J) -` A \ (\\<^sub>E i\I. S i)" - using y x `J \ I` PiE_cancel_merge[of "J" "I - J" x y S] \x\A\ + using y x \J \ I\ PiE_cancel_merge[of "J" "I - J" x y S] \x\A\ by (auto simp del: PiE_cancel_merge simp add: Un_absorb1) also have "\ \ (\x. restrict x J) -` B \ (\\<^sub>E i\I. S i)" by fact finally show "x \ B" - using y x `J \ I` PiE_cancel_merge[of "J" "I - J" x y S] \x\A\ eq + using y x \J \ I\ PiE_cancel_merge[of "J" "I - J" x y S] \x\A\ eq by (auto simp del: PiE_cancel_merge simp add: Un_absorb1) qed (insert \x\A\ sets, auto) qed @@ -62,7 +62,7 @@ show "(\\<^sub>E i\L. space (M i)) \ {}" using \L \ I\ by (auto simp add: not_empty_M space_PiM[symmetric]) show "(\x. restrict x J) -` X \ (\\<^sub>E i\L. space (M i)) \ (\x. restrict x J) -` Y \ (\\<^sub>E i\L. space (M i))" - using `prod_emb L M J X \ prod_emb L M J Y` by (simp add: prod_emb_def) + using \prod_emb L M J X \ prod_emb L M J Y\ by (simp add: prod_emb_def) qed fact lemma emb_injective: