diff -r 95cda5dd58d5 -r fc90277c0dd7 src/HOL/Inductive.thy --- a/src/HOL/Inductive.thy Mon Oct 08 22:03:21 2007 +0200 +++ b/src/HOL/Inductive.thy Mon Oct 08 22:03:25 2007 +0200 @@ -3,10 +3,10 @@ Author: Markus Wenzel, TU Muenchen *) -header {* Support for inductive sets and types *} +header {* Knaster-Tarski Fixpoint Theorem and inductive definitions *} theory Inductive -imports FixedPoint Sum_Type +imports Lattices Sum_Type uses ("Tools/inductive_package.ML") "Tools/dseq.ML" @@ -20,6 +20,227 @@ ("Tools/primrec_package.ML") begin +subsection {* Least and greatest fixed points *} + +definition + lfp :: "('a\complete_lattice \ 'a) \ 'a" where + "lfp f = Inf {u. f u \ u}" --{*least fixed point*} + +definition + gfp :: "('a\complete_lattice \ 'a) \ 'a" where + "gfp f = Sup {u. u \ f u}" --{*greatest fixed point*} + + +subsection{* Proof of Knaster-Tarski Theorem using @{term lfp} *} + +text{*@{term "lfp f"} is the least upper bound of + the set @{term "{u. f(u) \ u}"} *} + +lemma lfp_lowerbound: "f A \ A ==> lfp f \ A" + by (auto simp add: lfp_def intro: Inf_lower) + +lemma lfp_greatest: "(!!u. f u \ u ==> A \ u) ==> A \ lfp f" + by (auto simp add: lfp_def intro: Inf_greatest) + +lemma lfp_lemma2: "mono f ==> f (lfp f) \ lfp f" + by (iprover intro: lfp_greatest order_trans monoD lfp_lowerbound) + +lemma lfp_lemma3: "mono f ==> lfp f \ f (lfp f)" + by (iprover intro: lfp_lemma2 monoD lfp_lowerbound) + +lemma lfp_unfold: "mono f ==> lfp f = f (lfp f)" + by (iprover intro: order_antisym lfp_lemma2 lfp_lemma3) + +lemma lfp_const: "lfp (\x. t) = t" + by (rule lfp_unfold) (simp add:mono_def) + + +subsection {* General induction rules for least fixed points *} + +theorem lfp_induct: + assumes mono: "mono f" and ind: "f (inf (lfp f) P) <= P" + shows "lfp f <= P" +proof - + have "inf (lfp f) P <= lfp f" by (rule inf_le1) + with mono have "f (inf (lfp f) P) <= f (lfp f)" .. + also from mono have "f (lfp f) = lfp f" by (rule lfp_unfold [symmetric]) + finally have "f (inf (lfp f) P) <= lfp f" . + from this and ind have "f (inf (lfp f) P) <= inf (lfp f) P" by (rule le_infI) + hence "lfp f <= inf (lfp f) P" by (rule lfp_lowerbound) + also have "inf (lfp f) P <= P" by (rule inf_le2) + finally show ?thesis . +qed + +lemma lfp_induct_set: + assumes lfp: "a: lfp(f)" + and mono: "mono(f)" + and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)" + shows "P(a)" + by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp]) + (auto simp: inf_set_eq intro: indhyp) + +lemma lfp_ordinal_induct: + assumes mono: "mono f" + and P_f: "!!S. P S ==> P(f S)" + and P_Union: "!!M. !S:M. P S ==> P(Union M)" + shows "P(lfp f)" +proof - + let ?M = "{S. S \ lfp f & P S}" + have "P (Union ?M)" using P_Union by simp + also have "Union ?M = lfp f" + proof + show "Union ?M \ lfp f" by blast + hence "f (Union ?M) \ f (lfp f)" by (rule mono [THEN monoD]) + hence "f (Union ?M) \ lfp f" using mono [THEN lfp_unfold] by simp + hence "f (Union ?M) \ ?M" using P_f P_Union by simp + hence "f (Union ?M) \ Union ?M" by (rule Union_upper) + thus "lfp f \ Union ?M" by (rule lfp_lowerbound) + qed + finally show ?thesis . +qed + + +text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct}, + to control unfolding*} + +lemma def_lfp_unfold: "[| h==lfp(f); mono(f) |] ==> h = f(h)" +by (auto intro!: lfp_unfold) + +lemma def_lfp_induct: + "[| A == lfp(f); mono(f); + f (inf A P) \ P + |] ==> A \ P" + by (blast intro: lfp_induct) + +lemma def_lfp_induct_set: + "[| A == lfp(f); mono(f); a:A; + !!x. [| x: f(A Int {x. P(x)}) |] ==> P(x) + |] ==> P(a)" + by (blast intro: lfp_induct_set) + +(*Monotonicity of lfp!*) +lemma lfp_mono: "(!!Z. f Z \ g Z) ==> lfp f \ lfp g" + by (rule lfp_lowerbound [THEN lfp_greatest], blast intro: order_trans) + + +subsection {* Proof of Knaster-Tarski Theorem using @{term gfp} *} + +text{*@{term "gfp f"} is the greatest lower bound of + the set @{term "{u. u \ f(u)}"} *} + +lemma gfp_upperbound: "X \ f X ==> X \ gfp f" + by (auto simp add: gfp_def intro: Sup_upper) + +lemma gfp_least: "(!!u. u \ f u ==> u \ X) ==> gfp f \ X" + by (auto simp add: gfp_def intro: Sup_least) + +lemma gfp_lemma2: "mono f ==> gfp f \ f (gfp f)" + by (iprover intro: gfp_least order_trans monoD gfp_upperbound) + +lemma gfp_lemma3: "mono f ==> f (gfp f) \ gfp f" + by (iprover intro: gfp_lemma2 monoD gfp_upperbound) + +lemma gfp_unfold: "mono f ==> gfp f = f (gfp f)" + by (iprover intro: order_antisym gfp_lemma2 gfp_lemma3) + + +subsection {* Coinduction rules for greatest fixed points *} + +text{*weak version*} +lemma weak_coinduct: "[| a: X; X \ f(X) |] ==> a : gfp(f)" +by (rule gfp_upperbound [THEN subsetD], auto) + +lemma weak_coinduct_image: "!!X. [| a : X; g`X \ f (g`X) |] ==> g a : gfp f" +apply (erule gfp_upperbound [THEN subsetD]) +apply (erule imageI) +done + +lemma coinduct_lemma: + "[| X \ f (sup X (gfp f)); mono f |] ==> sup X (gfp f) \ f (sup X (gfp f))" + apply (frule gfp_lemma2) + apply (drule mono_sup) + apply (rule le_supI) + apply assumption + apply (rule order_trans) + apply (rule order_trans) + apply assumption + apply (rule sup_ge2) + apply assumption + done + +text{*strong version, thanks to Coen and Frost*} +lemma coinduct_set: "[| mono(f); a: X; X \ f(X Un gfp(f)) |] ==> a : gfp(f)" +by (blast intro: weak_coinduct [OF _ coinduct_lemma, simplified sup_set_eq]) + +lemma coinduct: "[| mono(f); X \ f (sup X (gfp f)) |] ==> X \ gfp(f)" + apply (rule order_trans) + apply (rule sup_ge1) + apply (erule gfp_upperbound [OF coinduct_lemma]) + apply assumption + done + +lemma gfp_fun_UnI2: "[| mono(f); a: gfp(f) |] ==> a: f(X Un gfp(f))" +by (blast dest: gfp_lemma2 mono_Un) + + +subsection {* Even Stronger Coinduction Rule, by Martin Coen *} + +text{* Weakens the condition @{term "X \ f(X)"} to one expressed using both + @{term lfp} and @{term gfp}*} + +lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un X Un B)" +by (iprover intro: subset_refl monoI Un_mono monoD) + +lemma coinduct3_lemma: + "[| X \ f(lfp(%x. f(x) Un X Un gfp(f))); mono(f) |] + ==> lfp(%x. f(x) Un X Un gfp(f)) \ f(lfp(%x. f(x) Un X Un gfp(f)))" +apply (rule subset_trans) +apply (erule coinduct3_mono_lemma [THEN lfp_lemma3]) +apply (rule Un_least [THEN Un_least]) +apply (rule subset_refl, assumption) +apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption) +apply (rule monoD, assumption) +apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto) +done + +lemma coinduct3: + "[| mono(f); a:X; X \ f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)" +apply (rule coinduct3_lemma [THEN [2] weak_coinduct]) +apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst], auto) +done + + +text{*Definition forms of @{text gfp_unfold} and @{text coinduct}, + to control unfolding*} + +lemma def_gfp_unfold: "[| A==gfp(f); mono(f) |] ==> A = f(A)" +by (auto intro!: gfp_unfold) + +lemma def_coinduct: + "[| A==gfp(f); mono(f); X \ f(sup X A) |] ==> X \ A" +by (iprover intro!: coinduct) + +lemma def_coinduct_set: + "[| A==gfp(f); mono(f); a:X; X \ f(X Un A) |] ==> a: A" +by (auto intro!: coinduct_set) + +(*The version used in the induction/coinduction package*) +lemma def_Collect_coinduct: + "[| A == gfp(%w. Collect(P(w))); mono(%w. Collect(P(w))); + a: X; !!z. z: X ==> P (X Un A) z |] ==> + a : A" +apply (erule def_coinduct_set, auto) +done + +lemma def_coinduct3: + "[| A==gfp(f); mono(f); a:X; X \ f(lfp(%x. f(x) Un X Un A)) |] ==> a: A" +by (auto intro!: coinduct3) + +text{*Monotonicity of @{term gfp}!*} +lemma gfp_mono: "(!!Z. f Z \ g Z) ==> gfp f \ gfp g" + by (rule gfp_upperbound [THEN gfp_least], blast intro: order_trans) + + subsection {* Inductive predicates and sets *} text {* Inversion of injective functions. *} @@ -64,6 +285,24 @@ Ball_def Bex_def induct_rulify_fallback +ML {* +val def_lfp_unfold = @{thm def_lfp_unfold} +val def_gfp_unfold = @{thm def_gfp_unfold} +val def_lfp_induct = @{thm def_lfp_induct} +val def_coinduct = @{thm def_coinduct} +val inf_bool_eq = @{thm inf_bool_eq} +val inf_fun_eq = @{thm inf_fun_eq} +val le_boolI = @{thm le_boolI} +val le_boolI' = @{thm le_boolI'} +val le_funI = @{thm le_funI} +val le_boolE = @{thm le_boolE} +val le_funE = @{thm le_funE} +val le_boolD = @{thm le_boolD} +val le_funD = @{thm le_funD} +val le_bool_def = @{thm le_bool_def} +val le_fun_def = @{thm le_fun_def} +*} + use "Tools/inductive_package.ML" setup InductivePackage.setup @@ -74,26 +313,6 @@ Ball_def Bex_def induct_rulify_fallback -lemma False_meta_all: - "Trueprop False \ (\P\bool. P)" -proof - fix P - assume False - then show P .. -next - assume "\P\bool. P" - then show False . -qed - -lemma not_eq_False: - assumes not_eq: "x \ y" - and eq: "x \ y" - shows False - using not_eq eq by auto - -lemmas not_eq_quodlibet = - not_eq_False [simplified False_meta_all] - subsection {* Inductive datatypes and primitive recursion *}