diff -r 3253aaf73a01 -r fcf90317383d src/HOL/Set_Interval.thy --- a/src/HOL/Set_Interval.thy Tue Mar 18 22:11:46 2014 +0100 +++ b/src/HOL/Set_Interval.thy Wed Mar 19 14:54:45 2014 +0000 @@ -1476,6 +1476,16 @@ "(\i = 0..n. (\j = 0..j = 0..i = Suc j..n. a i j)" by (induction n) (auto simp: setsum_addf) +lemma nested_setsum_swap': + "(\i\n. (\jji = Suc j..n. a i j)" + by (induction n) (auto simp: setsum_addf) + +lemma setsum_zero_power [simp]: + fixes c :: "nat \ 'a::division_ring" + shows "(\i\A. c i * 0^i) = (if finite A \ 0 \ A then c 0 else 0)" +apply (cases "finite A") + by (induction A rule: finite_induct) auto + subsection {* The formula for geometric sums *}