diff -r 784decc70e07 -r fd09da741833 src/HOL/Library/Convex_Euclidean_Space.thy --- a/src/HOL/Library/Convex_Euclidean_Space.thy Thu Jun 11 19:44:39 2009 -0700 +++ b/src/HOL/Library/Convex_Euclidean_Space.thy Thu Jun 11 20:04:55 2009 -0700 @@ -1228,27 +1228,6 @@ lemma continuous_dest_vec1: "continuous net f \ continuous net (\x. dest_vec1 (f x))" unfolding continuous_def by (rule tendsto_dest_vec1) -lemma mem_Times_iff: "x \ A \ B \ fst x \ A \ snd x \ B" -by (induct x) simp - -(* TODO: move *) -lemma compact_Times: "compact s \ compact t \ compact (s \ t)" -unfolding compact_def -apply clarify -apply (drule_tac x="fst \ f" in spec) -apply (drule mp, simp add: mem_Times_iff) -apply (clarify, rename_tac l1 r1) -apply (drule_tac x="snd \ f \ r1" in spec) -apply (drule mp, simp add: mem_Times_iff) -apply (clarify, rename_tac l2 r2) -apply (rule_tac x="(l1, l2)" in rev_bexI, simp) -apply (rule_tac x="r1 \ r2" in exI) -apply (rule conjI, simp add: subseq_def) -apply (drule_tac r=r2 in lim_subseq [COMP swap_prems_rl], assumption) -apply (drule (1) tendsto_Pair) back -apply (simp add: o_def) -done - (* TODO: move *) lemma compact_real_interval: fixes a b :: real shows "compact {a..b}"