diff -r 859fe9cc0838 -r fe7f5a26e4c6 src/HOL/Probability/Sigma_Algebra.thy --- a/src/HOL/Probability/Sigma_Algebra.thy Thu May 26 09:42:04 2011 +0200 +++ b/src/HOL/Probability/Sigma_Algebra.thy Thu May 26 14:11:57 2011 +0200 @@ -417,6 +417,20 @@ by (metis sigma_sets_subset subset_refl) qed +lemma sigma_sets_eqI: + assumes A: "\a. a \ A \ a \ sigma_sets M B" + assumes B: "\b. b \ B \ b \ sigma_sets M A" + shows "sigma_sets M A = sigma_sets M B" +proof (intro set_eqI iffI) + fix a assume "a \ sigma_sets M A" + from this A show "a \ sigma_sets M B" + by induct (auto intro!: sigma_sets.intros del: sigma_sets.Basic) +next + fix b assume "b \ sigma_sets M B" + from this B show "b \ sigma_sets M A" + by induct (auto intro!: sigma_sets.intros del: sigma_sets.Basic) +qed + lemma sigma_algebra_sigma: "sets M \ Pow (space M) \ sigma_algebra (sigma M)" apply (rule sigma_algebra_sigma_sets) @@ -1297,6 +1311,14 @@ lemma (in algebra) Int_stable: "Int_stable M" unfolding Int_stable_def by auto +lemma Int_stableI: + "(\a b. a \ A \ b \ A \ a \ b \ A) \ Int_stable \ space = \, sets = A \" + unfolding Int_stable_def by auto + +lemma Int_stableD: + "Int_stable M \ a \ sets M \ b \ sets M \ a \ b \ sets M" + unfolding Int_stable_def by auto + lemma (in dynkin_system) sigma_algebra_eq_Int_stable: "sigma_algebra M \ Int_stable M" proof