diff -r d5ff8b782b29 -r fee7cfa69c50 src/Doc/Tutorial/Advanced/Partial.thy --- a/src/Doc/Tutorial/Advanced/Partial.thy Sat Nov 01 11:40:55 2014 +0100 +++ b/src/Doc/Tutorial/Advanced/Partial.thy Sat Nov 01 14:20:38 2014 +0100 @@ -138,7 +138,7 @@ *} lemma "wf(step1 f) \ f(find(f,x)) = find(f,x)" -apply(induct_tac f x rule: find.induct); +apply(induct_tac f x rule: find.induct) apply simp done @@ -191,7 +191,7 @@ \y. while (\(x,x'). x' \ x) (\(x,x'). (x',f x')) (x,f x) = (y,y) \ f y = y" apply(rule_tac P = "\(x,x'). x' = f x" and - r = "inv_image (step1 f) fst" in while_rule); + r = "inv_image (step1 f) fst" in while_rule) apply auto apply(simp add: inv_image_def step1_def) done