diff -r d5ff8b782b29 -r fee7cfa69c50 src/Doc/Tutorial/Ifexpr/Ifexpr.thy --- a/src/Doc/Tutorial/Ifexpr/Ifexpr.thy Sat Nov 01 11:40:55 2014 +0100 +++ b/src/Doc/Tutorial/Ifexpr/Ifexpr.thy Sat Nov 01 14:20:38 2014 +0100 @@ -1,5 +1,5 @@ (*<*) -theory Ifexpr imports Main begin; +theory Ifexpr imports Main begin (*>*) subsection{*Case Study: Boolean Expressions*} @@ -19,7 +19,7 @@ *} datatype boolex = Const bool | Var nat | Neg boolex - | And boolex boolex; + | And boolex boolex text{*\noindent The two constants are represented by @{term"Const True"} and @@ -51,7 +51,7 @@ (@{term"IF"}): *} -datatype ifex = CIF bool | VIF nat | IF ifex ifex ifex; +datatype ifex = CIF bool | VIF nat | IF ifex ifex ifex text{*\noindent The evaluation of If-expressions proceeds as for @{typ"boolex"}: @@ -82,14 +82,14 @@ value of its argument: *} -lemma "valif (bool2if b) env = value b env"; +lemma "valif (bool2if b) env = value b env" txt{*\noindent The proof is canonical: *} -apply(induct_tac b); -apply(auto); +apply(induct_tac b) +apply(auto) done text{*\noindent @@ -120,7 +120,7 @@ transformation preserves the value of the expression: *} -theorem "valif (norm b) env = valif b env";(*<*)oops;(*>*) +theorem "valif (norm b) env = valif b env"(*<*)oops(*>*) text{*\noindent The proof is canonical, provided we first show the following simplification @@ -128,14 +128,14 @@ *} lemma [simp]: - "\t e. valif (normif b t e) env = valif (IF b t e) env"; + "\t e. valif (normif b t e) env = valif (IF b t e) env" (*<*) -apply(induct_tac b); -by(auto); +apply(induct_tac b) +by(auto) -theorem "valif (norm b) env = valif b env"; -apply(induct_tac b); -by(auto); +theorem "valif (norm b) env = valif b env" +apply(induct_tac b) +by(auto) (*>*) text{*\noindent Note that the lemma does not have a name, but is implicitly used in the proof @@ -156,14 +156,14 @@ normality of @{term"normif"}: *} -lemma [simp]: "\t e. normal(normif b t e) = (normal t \ normal e)"; +lemma [simp]: "\t e. normal(normif b t e) = (normal t \ normal e)" (*<*) -apply(induct_tac b); -by(auto); +apply(induct_tac b) +by(auto) -theorem "normal(norm b)"; -apply(induct_tac b); -by(auto); +theorem "normal(norm b)" +apply(induct_tac b) +by(auto) (*>*) text{*\medskip