diff -r c64628dbac00 -r ff12606337e9 src/HOL/Multivariate_Analysis/Integration.thy --- a/src/HOL/Multivariate_Analysis/Integration.thy Sun Oct 25 17:31:14 2015 +0100 +++ b/src/HOL/Multivariate_Analysis/Integration.thy Mon Oct 26 23:41:27 2015 +0000 @@ -1211,7 +1211,7 @@ apply (rule arg_cong[of _ _ interior]) using p(8) uv by auto also have "\ = {}" - unfolding interior_inter + unfolding interior_Int apply (rule inter_interior_unions_intervals) using p(6) p(7)[OF p(2)] p(3) apply auto @@ -4872,7 +4872,7 @@ "cbox m n \ {x. \x \ k - c\ \ d} = cbox u v \ {x. \x \ k - c\ \ d}" have "(cbox m n \ {x. \x \ k - c\ \ d}) \ (cbox u v \ {x. \x \ k - c\ \ d}) \ cbox m n \ cbox u v" by blast - note interior_mono[OF this, unfolded division_ofD(5)[OF p'' as(1-3)] interior_inter[of "cbox m n"]] + note interior_mono[OF this, unfolded division_ofD(5)[OF p'' as(1-3)] interior_Int[of "cbox m n"]] then have "interior (cbox m n \ {x. \x \ k - c\ \ d}) = {}" unfolding as Int_absorb by auto then show "content (cbox m n \ {x. \x \ k - c\ \ d}) = 0" @@ -7341,7 +7341,7 @@ guess v' using pa[OF k(2)] .. note v' = conjunctD2[OF this] let ?v = "min v v'" have "box a ?v \ k \ k'" unfolding v v' by (auto simp add: mem_box) - note interior_mono[OF this,unfolded interior_inter] + note interior_mono[OF this,unfolded interior_Int] moreover have "(a + ?v)/2 \ box a ?v" using k(3-) unfolding v v' content_eq_0 not_le @@ -7372,7 +7372,7 @@ let ?v = "max v v'" have "box ?v b \ k \ k'" unfolding v v' by (auto simp: mem_box) - note interior_mono[OF this,unfolded interior_inter] + note interior_mono[OF this,unfolded interior_Int] moreover have " ((b + ?v)/2) \ box ?v b" using k(3-) unfolding v v' content_eq_0 not_le by (auto simp: mem_box) ultimately have " ((b + ?v)/2) \ interior k \ interior k'" @@ -8014,7 +8014,7 @@ apply (rule assms(1)[unfolded connected_clopen,rule_format]) apply rule defer - apply (rule continuous_closed_in_preimage[OF assms(4) closed_singleton]) + apply (rule continuous_closedin_preimage[OF assms(4) closed_singleton]) apply (rule open_openin_trans[OF assms(2)]) unfolding open_contains_ball proof safe @@ -9427,7 +9427,7 @@ note kl = tagged_division_ofD(3,4)[OF qq[THEN conjunct1]] from this(2)[OF as(4,1)] guess u v by (elim exE) note uv=this have *: "interior (k \ l) = {}" - unfolding interior_inter + unfolding interior_Int apply (rule q') using as unfolding r_def @@ -10771,7 +10771,7 @@ proof goal_cases case prems: (1 l y) have "interior (k \ l) \ interior (l \ y)" - apply (subst(2) interior_inter) + apply (subst(2) interior_Int) apply (rule Int_greatest) defer apply (subst prems(4)) @@ -10960,7 +10960,7 @@ from d'(4)[OF this(1)] d'(4)[OF this(2)] guess u1 v1 u2 v2 by (elim exE) note uv=this have "{} = interior ((k \ y) \ cbox u v)" - apply (subst interior_inter) + apply (subst interior_Int) using d'(5)[OF prems(1-3)] apply auto done