diff -r 196ca0973a6d -r ff1574a81019 src/HOL/WF.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/WF.ML Fri Mar 03 12:02:25 1995 +0100 @@ -0,0 +1,198 @@ +(* Title: HOL/wf.ML + ID: $Id$ + Author: Tobias Nipkow + Copyright 1992 University of Cambridge + +For wf.thy. Well-founded Recursion +*) + +open WF; + +val H_cong = read_instantiate [("f","H::[?'a, ?'a=>?'b]=>?'b")] + (standard(refl RS cong RS cong)); +val H_cong1 = refl RS H_cong; + +(*Restriction to domain A. If r is well-founded over A then wf(r)*) +val [prem1,prem2] = goalw WF.thy [wf_def] + "[| r <= Sigma A (%u.A); \ +\ !!x P. [| ! x. (! y. : r --> P(y)) --> P(x); x:A |] ==> P(x) |] \ +\ ==> wf(r)"; +by (strip_tac 1); +by (rtac allE 1); +by (assume_tac 1); +by (best_tac (HOL_cs addSEs [prem1 RS subsetD RS SigmaE2] addIs [prem2]) 1); +qed "wfI"; + +val major::prems = goalw WF.thy [wf_def] + "[| wf(r); \ +\ !!x.[| ! y. : r --> P(y) |] ==> P(x) \ +\ |] ==> P(a)"; +by (rtac (major RS spec RS mp RS spec) 1); +by (fast_tac (HOL_cs addEs prems) 1); +qed "wf_induct"; + +(*Perform induction on i, then prove the wf(r) subgoal using prems. *) +fun wf_ind_tac a prems i = + EVERY [res_inst_tac [("a",a)] wf_induct i, + rename_last_tac a ["1"] (i+1), + ares_tac prems i]; + +val prems = goal WF.thy "[| wf(r); :r; :r |] ==> P"; +by (subgoal_tac "! x. :r --> :r --> P" 1); +by (fast_tac (HOL_cs addIs prems) 1); +by (wf_ind_tac "a" prems 1); +by (fast_tac set_cs 1); +qed "wf_asym"; + +val prems = goal WF.thy "[| wf(r); : r |] ==> P"; +by (rtac wf_asym 1); +by (REPEAT (resolve_tac prems 1)); +qed "wf_anti_refl"; + +(*transitive closure of a WF relation is WF!*) +val [prem] = goal WF.thy "wf(r) ==> wf(r^+)"; +by (rewtac wf_def); +by (strip_tac 1); +(*must retain the universal formula for later use!*) +by (rtac allE 1 THEN assume_tac 1); +by (etac mp 1); +by (res_inst_tac [("a","x")] (prem RS wf_induct) 1); +by (rtac (impI RS allI) 1); +by (etac tranclE 1); +by (fast_tac HOL_cs 1); +by (fast_tac HOL_cs 1); +qed "wf_trancl"; + + +(** cut **) + +(*This rewrite rule works upon formulae; thus it requires explicit use of + H_cong to expose the equality*) +goalw WF.thy [cut_def] + "(cut f r x = cut g r x) = (!y. :r --> f(y)=g(y))"; +by(simp_tac (HOL_ss addsimps [expand_fun_eq] + setloop (split_tac [expand_if])) 1); +qed "cut_cut_eq"; + +goalw WF.thy [cut_def] "!!x. :r ==> (cut f r a)(x) = f(x)"; +by(asm_simp_tac HOL_ss 1); +qed "cut_apply"; + + +(*** is_recfun ***) + +goalw WF.thy [is_recfun_def,cut_def] + "!!f. [| is_recfun r a H f; ~:r |] ==> f(b) = (@z.True)"; +by (etac ssubst 1); +by(asm_simp_tac HOL_ss 1); +qed "is_recfun_undef"; + +(*eresolve_tac transD solves :r using transitivity AT MOST ONCE + mp amd allE instantiate induction hypotheses*) +fun indhyp_tac hyps = + ares_tac (TrueI::hyps) ORELSE' + (cut_facts_tac hyps THEN' + DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE' + eresolve_tac [transD, mp, allE])); + +(*** NOTE! some simplifications need a different finish_tac!! ***) +fun indhyp_tac hyps = + resolve_tac (TrueI::refl::hyps) ORELSE' + (cut_facts_tac hyps THEN' + DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE' + eresolve_tac [transD, mp, allE])); +val wf_super_ss = HOL_ss setsolver indhyp_tac; + +val prems = goalw WF.thy [is_recfun_def,cut_def] + "[| wf(r); trans(r); is_recfun r a H f; is_recfun r b H g |] ==> \ + \ :r --> :r --> f(x)=g(x)"; +by (cut_facts_tac prems 1); +by (etac wf_induct 1); +by (REPEAT (rtac impI 1 ORELSE etac ssubst 1)); +by (asm_simp_tac (wf_super_ss addcongs [if_cong]) 1); +qed "is_recfun_equal_lemma"; +bind_thm ("is_recfun_equal", (is_recfun_equal_lemma RS mp RS mp)); + + +val prems as [wfr,transr,recfa,recgb,_] = goalw WF.thy [cut_def] + "[| wf(r); trans(r); \ +\ is_recfun r a H f; is_recfun r b H g; :r |] ==> \ +\ cut f r b = g"; +val gundef = recgb RS is_recfun_undef +and fisg = recgb RS (recfa RS (transr RS (wfr RS is_recfun_equal))); +by (cut_facts_tac prems 1); +by (rtac ext 1); +by (asm_simp_tac (wf_super_ss addsimps [gundef,fisg] + setloop (split_tac [expand_if])) 1); +qed "is_recfun_cut"; + +(*** Main Existence Lemma -- Basic Properties of the_recfun ***) + +val prems = goalw WF.thy [the_recfun_def] + "is_recfun r a H f ==> is_recfun r a H (the_recfun r a H)"; +by (res_inst_tac [("P", "is_recfun r a H")] selectI 1); +by (resolve_tac prems 1); +qed "is_the_recfun"; + +val prems = goal WF.thy + "[| wf(r); trans(r) |] ==> is_recfun r a H (the_recfun r a H)"; +by (cut_facts_tac prems 1); +by (wf_ind_tac "a" prems 1); +by (res_inst_tac [("f", "cut (%y. wftrec r y H) r a1")] is_the_recfun 1); +by (rewrite_goals_tac [is_recfun_def, wftrec_def]); +by (rtac (cut_cut_eq RS ssubst) 1); +(*Applying the substitution: must keep the quantified assumption!!*) +by (EVERY1 [strip_tac, rtac H_cong1, rtac allE, atac, + etac (mp RS ssubst), atac]); +by (fold_tac [is_recfun_def]); +by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cut_cut_eq]) 1); +qed "unfold_the_recfun"; + + +(*Beware incompleteness of unification!*) +val prems = goal WF.thy + "[| wf(r); trans(r); :r; :r |] \ +\ ==> the_recfun r a H c = the_recfun r b H c"; +by (DEPTH_SOLVE (ares_tac (prems@[is_recfun_equal,unfold_the_recfun]) 1)); +qed "the_recfun_equal"; + +val prems = goal WF.thy + "[| wf(r); trans(r); :r |] \ +\ ==> cut (the_recfun r a H) r b = the_recfun r b H"; +by (REPEAT (ares_tac (prems@[is_recfun_cut,unfold_the_recfun]) 1)); +qed "the_recfun_cut"; + +(*** Unfolding wftrec ***) + +goalw WF.thy [wftrec_def] + "!!r. [| wf(r); trans(r) |] ==> \ +\ wftrec r a H = H a (cut (%x.wftrec r x H) r a)"; +by (EVERY1 [stac (rewrite_rule [is_recfun_def] unfold_the_recfun), + REPEAT o atac, rtac H_cong1]); +by (asm_simp_tac (HOL_ss addsimps [cut_cut_eq,the_recfun_cut]) 1); +qed "wftrec"; + +(*Unused but perhaps interesting*) +val prems = goal WF.thy + "[| wf(r); trans(r); !!f x. H x (cut f r x) = H x f |] ==> \ +\ wftrec r a H = H a (%x.wftrec r x H)"; +by (rtac (wftrec RS trans) 1); +by (REPEAT (resolve_tac prems 1)); +qed "wftrec2"; + +(** Removal of the premise trans(r) **) + +goalw WF.thy [wfrec_def] + "!!r. wf(r) ==> wfrec r a H = H a (cut (%x.wfrec r x H) r a)"; +by (etac (wf_trancl RS wftrec RS ssubst) 1); +by (rtac trans_trancl 1); +by (rtac (refl RS H_cong) 1); (*expose the equality of cuts*) +by (simp_tac (HOL_ss addsimps [cut_cut_eq, cut_apply, r_into_trancl]) 1); +qed "wfrec"; + +(*This form avoids giant explosions in proofs. NOTE USE OF == *) +val rew::prems = goal WF.thy + "[| !!x. f(x)==wfrec r x H; wf(r) |] ==> f(a) = H a (cut (%x.f(x)) r a)"; +by (rewtac rew); +by (REPEAT (resolve_tac (prems@[wfrec]) 1)); +qed "def_wfrec";