diff -r c8a2755bf220 -r ff784d5a5bfb src/HOL/Analysis/Gamma_Function.thy --- a/src/HOL/Analysis/Gamma_Function.thy Sat Jan 05 17:00:43 2019 +0100 +++ b/src/HOL/Analysis/Gamma_Function.thy Sat Jan 05 17:24:33 2019 +0100 @@ -20,7 +20,7 @@ Based on the Gamma function, we also prove the Weierstraß product form of the sin function and, based on this, the solution of the Basel problem (the - sum over all @{term "1 / (n::nat)^2"}. + sum over all \<^term>\1 / (n::nat)^2\. \ lemma pochhammer_eq_0_imp_nonpos_Int: @@ -2073,7 +2073,7 @@ let ?h = "\z::complex. (of_real pi * cot (of_real pi*z) + Digamma z - Digamma (1 - z))" define h where [abs_def]: "h z = (if z \ \ then 0 else ?h z)" for z :: complex - \ \@{term g} is periodic with period 1.\ + \ \\<^term>\g\ is periodic with period 1.\ interpret g: periodic_fun_simple' g proof fix z :: complex @@ -2093,7 +2093,7 @@ qed (simp add: g_def) qed - \ \@{term g} is entire.\ + \ \\<^term>\g\ is entire.\ have g_g' [derivative_intros]: "(g has_field_derivative (h z * g z)) (at z)" for z :: complex proof (cases "z \ \") let ?h' = "\z. Beta z (1 - z) * ((Digamma z - Digamma (1 - z)) * sin (z * of_real pi) +