diff -r c8a2755bf220 -r ff784d5a5bfb src/HOL/Bali/AxExample.thy --- a/src/HOL/Bali/AxExample.thy Sat Jan 05 17:00:43 2019 +0100 +++ b/src/HOL/Bali/AxExample.thy Sat Jan 05 17:24:33 2019 +0100 @@ -58,13 +58,13 @@ .test [Class Base]. {\Y s Z. abrupt s = Some (Xcpt (Std IndOutBound))}" apply (unfold test_def arr_viewed_from_def) -apply (tactic "ax_tac @{context} 1" (*;;*)) +apply (tactic "ax_tac \<^context> 1" (*;;*)) defer (* We begin with the last assertion, to synthesise the intermediate assertions, like in the fashion of the weakest precondition. *) -apply (tactic "ax_tac @{context} 1" (* Try *)) +apply (tactic "ax_tac \<^context> 1" (* Try *)) defer -apply (tactic \inst1_tac @{context} "Q" +apply (tactic \inst1_tac \<^context> "Q" "\Y s Z. arr_inv (snd s) \ tprg,s\catch SXcpt NullPointer" []\) prefer 2 apply simp @@ -74,26 +74,26 @@ apply (rule_tac Q' = "(\Y s Z. Q Y s Z)\=False\=\" and Q = Q for Q in conseq2) prefer 2 apply simp -apply (tactic "ax_tac @{context} 1" (* While *)) +apply (tactic "ax_tac \<^context> 1" (* While *)) prefer 2 apply (rule ax_impossible [THEN conseq1], clarsimp) apply (rule_tac P' = "Normal P" and P = P for P in conseq1) prefer 2 apply clarsimp -apply (tactic "ax_tac @{context} 1") -apply (tactic "ax_tac @{context} 1" (* AVar *)) +apply (tactic "ax_tac \<^context> 1") +apply (tactic "ax_tac \<^context> 1" (* AVar *)) prefer 2 apply (rule ax_subst_Val_allI) -apply (tactic \inst1_tac @{context} "P'" "\a. Normal (PP a\x)" ["PP", "x"]\) +apply (tactic \inst1_tac \<^context> "P'" "\a. Normal (PP a\x)" ["PP", "x"]\) apply (simp del: avar_def2 peek_and_def2) -apply (tactic "ax_tac @{context} 1") -apply (tactic "ax_tac @{context} 1") +apply (tactic "ax_tac \<^context> 1") +apply (tactic "ax_tac \<^context> 1") (* just for clarification: *) apply (rule_tac Q' = "Normal (\Var:(v, f) u ua. fst (snd (avar tprg (Intg 2) v u)) = Some (Xcpt (Std IndOutBound)))" in conseq2) prefer 2 apply (clarsimp simp add: split_beta) -apply (tactic "ax_tac @{context} 1" (* FVar *)) -apply (tactic "ax_tac @{context} 2" (* StatRef *)) +apply (tactic "ax_tac \<^context> 1" (* FVar *)) +apply (tactic "ax_tac \<^context> 2" (* StatRef *)) apply (rule ax_derivs.Done [THEN conseq1]) apply (clarsimp simp add: arr_inv_def inited_def in_bounds_def) defer @@ -101,20 +101,20 @@ apply (rule_tac Q' = "(\Y (x, s) Z. x = Some (Xcpt (Std NullPointer)) \ arr_inv s) \. heap_free two" in conseq2) prefer 2 apply (simp add: arr_inv_new_obj) -apply (tactic "ax_tac @{context} 1") +apply (tactic "ax_tac \<^context> 1") apply (rule_tac C = "Ext" in ax_Call_known_DynT) apply (unfold DynT_prop_def) apply (simp (no_asm)) apply (intro strip) apply (rule_tac P' = "Normal P" and P = P for P in conseq1) -apply (tactic "ax_tac @{context} 1" (* Methd *)) +apply (tactic "ax_tac \<^context> 1" (* Methd *)) apply (rule ax_thin [OF _ empty_subsetI]) apply (simp (no_asm) add: body_def2) -apply (tactic "ax_tac @{context} 1" (* Body *)) +apply (tactic "ax_tac \<^context> 1" (* Body *)) (* apply (rule_tac [2] ax_derivs.Abrupt) *) defer apply (simp (no_asm)) -apply (tactic "ax_tac @{context} 1") (* Comp *) +apply (tactic "ax_tac \<^context> 1") (* Comp *) (* The first statement in the composition ((Ext)z).vee = 1; Return Null will throw an exception (since z is null). So we can handle @@ -122,33 +122,33 @@ apply (rule_tac [2] ax_derivs.Abrupt) apply (rule ax_derivs.Expr) (* Expr *) -apply (tactic "ax_tac @{context} 1") (* Ass *) +apply (tactic "ax_tac \<^context> 1") (* Ass *) prefer 2 apply (rule ax_subst_Var_allI) -apply (tactic \inst1_tac @{context} "P'" "\a vs l vf. PP a vs l vf\x \. p" ["PP", "x", "p"]\) +apply (tactic \inst1_tac \<^context> "P'" "\a vs l vf. PP a vs l vf\x \. p" ["PP", "x", "p"]\) apply (rule allI) -apply (tactic \simp_tac (@{context} delloop "split_all_tac" delsimps [@{thm peek_and_def2}, @{thm heap_def2}, @{thm subst_res_def2}, @{thm normal_def2}]) 1\) +apply (tactic \simp_tac (\<^context> delloop "split_all_tac" delsimps [@{thm peek_and_def2}, @{thm heap_def2}, @{thm subst_res_def2}, @{thm normal_def2}]) 1\) apply (rule ax_derivs.Abrupt) apply (simp (no_asm)) -apply (tactic "ax_tac @{context} 1" (* FVar *)) -apply (tactic "ax_tac @{context} 2", tactic "ax_tac @{context} 2", tactic "ax_tac @{context} 2") -apply (tactic "ax_tac @{context} 1") -apply (tactic \inst1_tac @{context} "R" "\a'. Normal ((\Vals:vs (x, s) Z. arr_inv s \ inited Ext (globs s) \ a' \ Null \ vs = [Null]) \. heap_free two)" []\) +apply (tactic "ax_tac \<^context> 1" (* FVar *)) +apply (tactic "ax_tac \<^context> 2", tactic "ax_tac \<^context> 2", tactic "ax_tac \<^context> 2") +apply (tactic "ax_tac \<^context> 1") +apply (tactic \inst1_tac \<^context> "R" "\a'. Normal ((\Vals:vs (x, s) Z. arr_inv s \ inited Ext (globs s) \ a' \ Null \ vs = [Null]) \. heap_free two)" []\) apply fastforce prefer 4 apply (rule ax_derivs.Done [THEN conseq1],force) apply (rule ax_subst_Val_allI) -apply (tactic \inst1_tac @{context} "P'" "\a. Normal (PP a\x)" ["PP", "x"]\) +apply (tactic \inst1_tac \<^context> "P'" "\a. Normal (PP a\x)" ["PP", "x"]\) apply (simp (no_asm) del: peek_and_def2 heap_free_def2 normal_def2 o_apply) -apply (tactic "ax_tac @{context} 1") +apply (tactic "ax_tac \<^context> 1") prefer 2 apply (rule ax_subst_Val_allI) -apply (tactic \inst1_tac @{context} "P'" "\aa v. Normal (QQ aa v\y)" ["QQ", "y"]\) +apply (tactic \inst1_tac \<^context> "P'" "\aa v. Normal (QQ aa v\y)" ["QQ", "y"]\) apply (simp del: peek_and_def2 heap_free_def2 normal_def2) -apply (tactic "ax_tac @{context} 1") -apply (tactic "ax_tac @{context} 1") -apply (tactic "ax_tac @{context} 1") -apply (tactic "ax_tac @{context} 1") +apply (tactic "ax_tac \<^context> 1") +apply (tactic "ax_tac \<^context> 1") +apply (tactic "ax_tac \<^context> 1") +apply (tactic "ax_tac \<^context> 1") (* end method call *) apply (simp (no_asm)) (* just for clarification: *) @@ -158,14 +158,14 @@ in conseq2) prefer 2 apply clarsimp -apply (tactic "ax_tac @{context} 1") -apply (tactic "ax_tac @{context} 1") +apply (tactic "ax_tac \<^context> 1") +apply (tactic "ax_tac \<^context> 1") defer apply (rule ax_subst_Var_allI) -apply (tactic \inst1_tac @{context} "P'" "\vf. Normal (PP vf \. p)" ["PP", "p"]\) +apply (tactic \inst1_tac \<^context> "P'" "\vf. Normal (PP vf \. p)" ["PP", "p"]\) apply (simp (no_asm) del: split_paired_All peek_and_def2 initd_def2 heap_free_def2 normal_def2) -apply (tactic "ax_tac @{context} 1" (* NewC *)) -apply (tactic "ax_tac @{context} 1" (* ax_Alloc *)) +apply (tactic "ax_tac \<^context> 1" (* NewC *)) +apply (tactic "ax_tac \<^context> 1" (* ax_Alloc *)) (* just for clarification: *) apply (rule_tac Q' = "Normal ((\Y s Z. arr_inv (store s) \ vf=lvar (VName e) (store s)) \. heap_free three \. initd Ext)" in conseq2) prefer 2 @@ -177,47 +177,47 @@ apply (rule ax_InitS) apply force apply (simp (no_asm)) -apply (tactic \simp_tac (@{context} delloop "split_all_tac") 1\) +apply (tactic \simp_tac (\<^context> delloop "split_all_tac") 1\) apply (rule ax_Init_Skip_lemma) -apply (tactic \simp_tac (@{context} delloop "split_all_tac") 1\) +apply (tactic \simp_tac (\<^context> delloop "split_all_tac") 1\) apply (rule ax_InitS [THEN conseq1] (* init Base *)) apply force apply (simp (no_asm)) apply (unfold arr_viewed_from_def) apply (rule allI) apply (rule_tac P' = "Normal P" and P = P for P in conseq1) -apply (tactic \simp_tac (@{context} delloop "split_all_tac") 1\) -apply (tactic "ax_tac @{context} 1") -apply (tactic "ax_tac @{context} 1") +apply (tactic \simp_tac (\<^context> delloop "split_all_tac") 1\) +apply (tactic "ax_tac \<^context> 1") +apply (tactic "ax_tac \<^context> 1") apply (rule_tac [2] ax_subst_Var_allI) -apply (tactic \inst1_tac @{context} "P'" "\vf l vfa. Normal (P vf l vfa)" ["P"]\) -apply (tactic \simp_tac (@{context} delloop "split_all_tac" delsimps [@{thm split_paired_All}, @{thm peek_and_def2}, @{thm heap_free_def2}, @{thm initd_def2}, @{thm normal_def2}, @{thm supd_lupd}]) 2\) -apply (tactic "ax_tac @{context} 2" (* NewA *)) -apply (tactic "ax_tac @{context} 3" (* ax_Alloc_Arr *)) -apply (tactic "ax_tac @{context} 3") -apply (tactic \inst1_tac @{context} "P" "\vf l vfa. Normal (P vf l vfa\\)" ["P"]\) -apply (tactic \simp_tac (@{context} delloop "split_all_tac") 2\) -apply (tactic "ax_tac @{context} 2") -apply (tactic "ax_tac @{context} 1" (* FVar *)) -apply (tactic "ax_tac @{context} 2" (* StatRef *)) +apply (tactic \inst1_tac \<^context> "P'" "\vf l vfa. Normal (P vf l vfa)" ["P"]\) +apply (tactic \simp_tac (\<^context> delloop "split_all_tac" delsimps [@{thm split_paired_All}, @{thm peek_and_def2}, @{thm heap_free_def2}, @{thm initd_def2}, @{thm normal_def2}, @{thm supd_lupd}]) 2\) +apply (tactic "ax_tac \<^context> 2" (* NewA *)) +apply (tactic "ax_tac \<^context> 3" (* ax_Alloc_Arr *)) +apply (tactic "ax_tac \<^context> 3") +apply (tactic \inst1_tac \<^context> "P" "\vf l vfa. Normal (P vf l vfa\\)" ["P"]\) +apply (tactic \simp_tac (\<^context> delloop "split_all_tac") 2\) +apply (tactic "ax_tac \<^context> 2") +apply (tactic "ax_tac \<^context> 1" (* FVar *)) +apply (tactic "ax_tac \<^context> 2" (* StatRef *)) apply (rule ax_derivs.Done [THEN conseq1]) -apply (tactic \inst1_tac @{context} "Q" "\vf. Normal ((\Y s Z. vf=lvar (VName e) (snd s)) \. heap_free four \. initd Base \. initd Ext)" []\) +apply (tactic \inst1_tac \<^context> "Q" "\vf. Normal ((\Y s Z. vf=lvar (VName e) (snd s)) \. heap_free four \. initd Base \. initd Ext)" []\) apply (clarsimp split del: if_split) apply (frule atleast_free_weaken [THEN atleast_free_weaken]) apply (drule initedD) apply (clarsimp elim!: atleast_free_SucD simp add: arr_inv_def) apply force -apply (tactic \simp_tac (@{context} delloop "split_all_tac") 1\) +apply (tactic \simp_tac (\<^context> delloop "split_all_tac") 1\) apply (rule ax_triv_Init_Object [THEN peek_and_forget2, THEN conseq1]) apply (rule wf_tprg) apply clarsimp -apply (tactic \inst1_tac @{context} "P" "\vf. Normal ((\Y s Z. vf = lvar (VName e) (snd s)) \. heap_free four \. initd Ext)" []\) +apply (tactic \inst1_tac \<^context> "P" "\vf. Normal ((\Y s Z. vf = lvar (VName e) (snd s)) \. heap_free four \. initd Ext)" []\) apply clarsimp -apply (tactic \inst1_tac @{context} "PP" "\vf. Normal ((\Y s Z. vf = lvar (VName e) (snd s)) \. heap_free four \. Not \ initd Base)" []\) +apply (tactic \inst1_tac \<^context> "PP" "\vf. Normal ((\Y s Z. vf = lvar (VName e) (snd s)) \. heap_free four \. Not \ initd Base)" []\) apply clarsimp (* end init *) apply (rule conseq1) -apply (tactic "ax_tac @{context} 1") +apply (tactic "ax_tac \<^context> 1") apply clarsimp done @@ -234,48 +234,48 @@ (Expr (Ass (LVar i) (Acc (LVar j))))). {Q}" apply (rule_tac P' = "Q" and Q' = "Q\=False\=\" in conseq12) apply safe -apply (tactic "ax_tac @{context} 1" (* Loop *)) +apply (tactic "ax_tac \<^context> 1" (* Loop *)) apply (rule ax_Normal_cases) prefer 2 apply (rule ax_derivs.Abrupt [THEN conseq1], clarsimp simp add: Let_def) apply (rule conseq1) -apply (tactic "ax_tac @{context} 1") +apply (tactic "ax_tac \<^context> 1") apply clarsimp prefer 2 apply clarsimp -apply (tactic "ax_tac @{context} 1" (* If *)) +apply (tactic "ax_tac \<^context> 1" (* If *)) apply (tactic - \inst1_tac @{context} "P'" "Normal (\s.. (\Y s Z. True)\=Val (the (locals s i)))" []\) -apply (tactic "ax_tac @{context} 1") + \inst1_tac \<^context> "P'" "Normal (\s.. (\Y s Z. True)\=Val (the (locals s i)))" []\) +apply (tactic "ax_tac \<^context> 1") apply (rule conseq1) -apply (tactic "ax_tac @{context} 1") +apply (tactic "ax_tac \<^context> 1") apply clarsimp apply (rule allI) apply (rule ax_escape) apply auto apply (rule conseq1) -apply (tactic "ax_tac @{context} 1" (* Throw *)) -apply (tactic "ax_tac @{context} 1") -apply (tactic "ax_tac @{context} 1") +apply (tactic "ax_tac \<^context> 1" (* Throw *)) +apply (tactic "ax_tac \<^context> 1") +apply (tactic "ax_tac \<^context> 1") apply clarsimp apply (rule_tac Q' = "Normal (\Y s Z. True)" in conseq2) prefer 2 apply clarsimp apply (rule conseq1) -apply (tactic "ax_tac @{context} 1") -apply (tactic "ax_tac @{context} 1") +apply (tactic "ax_tac \<^context> 1") +apply (tactic "ax_tac \<^context> 1") prefer 2 apply (rule ax_subst_Var_allI) -apply (tactic \inst1_tac @{context} "P'" "\b Y ba Z vf. \Y (x,s) Z. x=None \ snd vf = snd (lvar i s)" []\) +apply (tactic \inst1_tac \<^context> "P'" "\b Y ba Z vf. \Y (x,s) Z. x=None \ snd vf = snd (lvar i s)" []\) apply (rule allI) apply (rule_tac P' = "Normal P" and P = P for P in conseq1) prefer 2 apply clarsimp -apply (tactic "ax_tac @{context} 1") +apply (tactic "ax_tac \<^context> 1") apply (rule conseq1) -apply (tactic "ax_tac @{context} 1") +apply (tactic "ax_tac \<^context> 1") apply clarsimp -apply (tactic "ax_tac @{context} 1") +apply (tactic "ax_tac \<^context> 1") apply clarsimp done