# HG changeset patch # User paulson # Date 1466075104 -3600 # Node ID 00090a0cd17f96be4b5fca8b99cbbd25d5a05aa6 # Parent 3b69758756331faf4c267e4051862fe7f0eef9dc Removed instances of ^ from theory markup diff -r 3b6975875633 -r 00090a0cd17f src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy --- a/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Wed Jun 15 15:52:24 2016 +0100 +++ b/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Thu Jun 16 12:05:04 2016 +0100 @@ -2298,11 +2298,13 @@ text\Absolute retracts (AR), absolute neighbourhood retracts (ANR) and also Euclidean neighbourhood retracts (ENR). We define AR and ANR by specializing the standard definitions for a set to embedding in -spaces of higher dimension. This turns out to be sufficient (since any set in +spaces of higher dimension. \ + +(*This turns out to be sufficient (since any set in R^n can be embedded as a closed subset of a convex subset of R^{n+1}) to derive the usual definitions, but we need to split them into two implications because of the lack of type quantifiers. Then ENR turns out -to be equivalent to ANR plus local compactness.\ +to be equivalent to ANR plus local compactness. -- JRH*) definition AR :: "'a::topological_space set => bool" where diff -r 3b6975875633 -r 00090a0cd17f src/HOL/Multivariate_Analysis/Extension.thy --- a/src/HOL/Multivariate_Analysis/Extension.thy Wed Jun 15 15:52:24 2016 +0100 +++ b/src/HOL/Multivariate_Analysis/Extension.thy Thu Jun 16 12:05:04 2016 +0100 @@ -112,7 +112,7 @@ qed -subsection\Urysohn's lemma (for real^N, where the proof is easy using distances)\ +subsection\Urysohn's lemma (for Euclidean spaces, where the proof is easy using distances)\ lemma Urysohn_both_ne: assumes US: "closedin (subtopology euclidean U) S"